CSE353 - MACHINE LEARNING
CLASSIFICATION

PRAVIN PAWAR, SUNY KOREA
BASED ON CHAPTER 3 - HANDS-ON ML WITH SCIKIT-LEARN, KERAS AND TENSORFLOW BY AURELIEN GERON
= y - i)
- - - o .. T — -
= |

R

X TS D

x

e

>

CONTENTS

MNIST handwritten digits dataset

Training a binary classifier

Classification performance measures

Multiclass classification
Error analysis
Multilabel classification

Multioutput classification

9/13/2020

SOME SCIKIT-LEARN DATASETS

= Boston house prices dataset (regression)
= |ris plants dataset (classification)

= Diabetes dataset (regression)

= QOptical recognition of handwritten digits dataset (classification)

= UCI breast cancer dataset (classification)
= The Olivetti faces dataset (classification)
= 20 newsgroups dataset (classification)

= RCV1 multilabel dataset (classification)

= Labeled Faces in the Wild (LFW) people dataset (classification)

= Labeled Faces in the Wild (LFW) pairs dataset (classification)

= California housing dataset (regression)

MNIST (MODIFIED NATIONAL INSTITUTE OF STANDARDS AND

TECHNOLOGY) DATASET :
S04/ 92\ 3 | #

oo fw—g X
NON RO %%Q Y
CTP—ad2 e W
SV rw NN ®
] PO W W —
DS O Y4 %N & N
NN RO e D
%N N~ YW N
WONOLee M)
NN NONW e N

Contains 70,000 small images of digits handwritten by high
school students and employees of US Census Bureau

Each image is 28x28 pixels - thus total 784 features (Each
feature represents pixel intensity O to 255)

Image label consists of digits it represents

from sklearn.datasets import fetch_openml
mnist = fetch_openml(‘mnist_784', version=1)
mnist.keys()

dict_keys(['data’,
‘details', 'categories’',

'target', 'feature_names’,
‘url'])

'DESCR',
X, y = mnist["data"], mnist["target”]
X.shape

(70000, 784)

y.shape
(70000,)

X_train, X_test, y_train, y_test =
X[:60000], X[60000:], y[:60000], y[60000:]

9/13/2020

TRAINING A BINARY CLASSIFIER - CONSIDER THE CASE WHERE DIGIT =5

y_train_5 = (y_train == 5)
y_test_5 = (y_test == §5)
print(y_train_5.shape)
print(y_test_5.shape)
(60000,)
(1eee8,)
N
Initial ¥ Gradient
. radien
e Weight \ 1,’,/
I
-1 T T T T T Incremental

= Stochastic gradient descent (SGD)

= In SGD, it uses only a single sample, i.e., a batch size
of one, to perform each iteration

Minimum Cost

= The sample is randomly shuffled and selected for Periativelof Cost

performing the iteration >
Weight

APPLYING STOCHASTIC GRADIENT DESCENT CLASSIFIER

from sklearn.linear_model import SGDClassifier

sgd_clf = SGDClassifier(max_iter=10@0, tol=1e-3, random_state=42)
sgd_clf.fit(X_train, y_train_5)

SGDClassifier(alpha=@.8001, average=False, class_weight=None,
early_stopping=False, epsilon=0.1, eta®=0.0, fit_intercept=True,
11_ratio=0.15, learning_rate='optimal', loss='hinge', max_iter=1600,
n_iter=None, n_iter_no_change=5, n_jobs=None, penalty='12",
power_t=e.5, random_state=42, shuffle=True, tol=0.001,
validation_fraction=0.1, verbose=0, warm_start=False)

some_digit = X[@]

sgd_clf.predict([some_digit])

array([Truel)

from sklearn.model_selection import cross_val_score
cross_val_score(sgd_clf, X_train, y_train_5, cv=3, scoring="accuracy")

array([©.96355, 8.93795, ©.95615])

9/13/2020

9/13/2020

COMPARING CROSS VALIDATION ACCURACY WITH A DUMB CLASSIFIER - NOT 5

from sklearn.base import BaseEstimator
class Nevers5Classifier(BaseEstimator):
def fit(self, X, y=None):
pass
def predict(self, X):
return np.zeros((len(X), 1), dtype=bool)

never 5 clf = Never5Classifier()
cross val score(never 5 clf, X train, y train 5, cv=3, scoring="accuracy")

array([@.91125, ©.98855, 0.90915])

= A dumb classifier has over 90% accuracy!!
= Because only about 10% of the images are 5s

= Hence accuracy is generally not a preferred performance measure for classifiers - specially dealing with skewed
datasets

CONFUSION MATRIX

Predicted Class
Sy
Positive Negative
Pas na P False Negative (FN) Seneitiviiy
PRba || Trstositmiii) Type I Error ﬁ Confusion matrix is a better approach
Actual Class to evaluate performance of a classifier
o Specificity . .
Negative Fa']se P°:“:f"‘* FP) | ye Negative () ik The general idea is to count the
i (TN + FP) number of times instances of class A
- Negative Predictive Fa— are classified as class B
Precision
Value TP+TN
ol ™ TP+ TN+FPFFN)
(TP + FP) s
(TN + FN)

9/13/2020

CONFUSION MATRIX

from sklearn.model selection import cross val predict
y train pred = cross val predict(sgd clf, X train, y train 5, cv=3)

from sklearn.metrics import confusion matrix
confusion matrix(y train 5, y train pred)
array([[53857, 1522],
[1325, 4096]])
y_train perfect predictions = y train 5 # pretend we reached perfection

confusion matrix(y train 5, y train perfect predictions)

array([[54579, 2],
[e, 5421]])

9
|
Precision = Precision: Accuracy of positive predictions
TP
(TP +FP)
Sensitivity
P = Recall (sensitivity): True positive rate represents the ratio of positive instances that are
e correctly detected by the classifier
(TP + FN)
Predicted
Negative Positive ﬁ
Negative % 3 6
Actual ; Precision
5 (e.g., 3out of 4)
Positi l Y
ositive b 5_, 5 5
Recall °
(e.g., 3 out of 5)
10

BINARY CLASSIFIER - PRECISION & RECALL

from sklearn.metrics import precision_score, recall score
precision score(y train 5, y train pred)

8.7298850836596654

4096 / (4096 + 1522)

2.7290650836596654

recall score(y train 5, y train pred)

8.7555801512636644

4096 / (4096 + 1325)

8.7555801512636644

11
|
COMBINE PRECISION AND RECALL INTO F, SCORE
2 precision x recall e
1 1 precision +recall ~ pp , EN+FP
— F ————
precision = recall 2
= The F1 score is the harmonic mean of precision and recall
= Whereas the regular mean treats all values equally, the harmonic mean gives much more weight to low values
= Hence the classifier will get a high F1 score only if both recall and precision are high.
from sklearn.metrics import f1_score
f1_score(y_train_5, y_train_pred)
0.7420962043663375
4096 / (4096 + (1522 + 1325) / 2)
0.7420962043663375
12

9/13/2020

HIGH PRECISION VS HIGH RECALL

= High precision example

= Sometimes high precision is desired (means less False

Positive)

= E.g. detect videos suitable for children (A suitable video is

considered Positive)

Negative

Actual

Predicted
Negative Positive g

F 3 7
> 2

Precision

(e.g., 3outof 4)
5 &~ |59 ‘

Positive l

= A classifier that rejects lot of suitable videos, but never
shows adult content has high precision

= High recall example

= Sometimes high recall is desired (means less False

Negative)

= [t would be fine id the classifier has only 25% precision
(lot of false alarms or False Positive)

= But should alarm every time when someone breaks in
(less False Negative)

Recall
(e.g., 3out of 5)

Precision
TP
(TP + FP)

Sensitivity
TP
(TP + FN)

13
|
PRECISION-RECALL TRADEOFF IN BINARY CLASSIFIER
= A SGD classifier computes score based on a decision function
= |f score greater than a threshold, an instance is positive otherwise it is negative
= Depending on the threshold level, precision and recall values show a tradeoff.
= High precision corresponds to low recall and vice-versa
Precision: 6/8 = 75% 4/5=80% 3/3=100% . s
Recall: 6/6 = 100% 416 =67% 3/6 = 50% Precision
TP
- TP + FP
FFR7252 5 €555 SR
B Score Sensitivity
Negative predictions S A -7 Positive predictions TP
<:| Various; .ﬂ-'l;’e.asholds ::> (TP +FN)
14

9/13/2020

PRECISION-RECALL TRADEOFF IN BINARY CLASSIFIER

= The trade-off between precision and recall can be observed using the precision-
recall curve

m [t lets you spot which threshold is the best

W _—==—=======x r
... ‘. ' P]‘ecision
0.81 +
TP
061 --- Precision (TP + FP)
/
_______________________________________ | SISy R (W, —— Recall
0.4 ! ¥
’I
02 , -4 Sensitivity
"""""""" : TP
00 —40000 ~20000 0 20000 40000 (TP + FN)
Threshold
15
|
PRECISION-RECALL TRADEOFF IN BINARY CLASSIFIER
4.5 = Another way to select a good
__ precision/recall trade-off is to plot
precision directly against recall (the
0.8 . .
same threshold as earlier is
highlighted)
§ e = Precision really starts to fall sharply
® around 80% recall
064
= Probably want to select a
precision/recall trade-off just before
02 g that drop
i = |f someone says, “Let’s reach 99%
% 02 0a 06 oa 10 precision,” you should ask, “At what
Recall ”
recall?
16

9/13/2020

THE RECEIVER OPERATING CHARACTERISTIC (ROC) CURVE

ROC curve is another common tool used with binary classifiers

Similar to the precision/recall curve

ROC curve plots the true positive rate (recall) against the false positive rate (FPR)
The FPR is the ratio of negative instances that are incorrectly classified as positive

Itis equal to 1 - the true negative rate (TNR), which is the ratio of negative instances that
are correctly classified as negative

The TNR is also called specificity

Hence, the ROC curve plots sensitivity (recall) versus 1 - specificity

Sensitivity Specificity
TP TN
(TP + FN) (TN + FP)

17
I
4 = Once again there is a trade-off
/” = The higher the recall (TPR), the more false
e positives (FPR) the classifier produces
_ 0.8 /” = The dotted line represents the ROC curve
= L of a purely random classifier
o -
% /" = A good classifier stays as far away from
306 e that line as possible (toward the top-left
T & corner)
o e
g i = Red dot represents chosen threshold
q 041 //" ‘ = Area Under Curve (AUC) is another criteria
t e for comparing classifiers
E ‘ ,/’ = A purely random classifier has ROC AUC =
0.2% il ‘ 0.5
,/" from sklearn.metrics import roc_auc_score
0.0+~ ! ! ; . roc_auc_score(y_train_5, y_scores)
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate 0.9611778893101814
18

9/13/2020

THE RECEIVER OPERATING CHARACTERISTIC (ROC) CURVE

from sklearn.metrics impert roc_curve

fpr, tpr, thresholds = roc_curve(y train 5, y scores)

def plot roc_curve(fpr, tpr, label=None):
plt.plot(fpr, tpr, linewidth=2, label=label)
plt.plot([e, 1], [@, 1], 'k--') # dashed diagonal
plt.axis([e, 1, @, 1])
plt.xlabel('False Positive Rate (Fall-out)', fontsize=16)
plt.ylabel(' True Positive Rate (Recall)', fontsize=16)
plt.grid(True)

plt.figure(figsize=(8, 6))

plot_roc_curve(fpr, tpr)

plt.plot([4.837e-3, 4.837e-3], [©., ©.4368], "r:")
plt.plot([@.0, 4.837e-3], [0.4368, 0.4363], "r:")
plt.plot([4.837e-3], [@.4368], "ro")

save fig("roc_curve plot")

plt.show()

ROC vs PR Curve

Since the ROC curve is so similar to the
precision/recall (PR) curve, you may wonder
how to decide which one to use

Prefer the PR curve whenever the positive
class is rare or when you care more about
the false positives than the false negatives

Otherwise, use the ROC curve

Looking at the previous ROC curve (and the
ROC AUC score), you

may think that the classifier is really good

But this is mostly because there are few
positives (5s) compared to the negatives
(non-5s)

In contrast, the PR curve makes it clear that

the classifier has room for improvement

19

COMPARING SGD VS RANDOM FOREST CLASSIFIER

1.0

0.4 4

True Positive Rate (Recall)

024

0.0

—— Random Forest

SGD

Dé Gh dﬁ
False Positive Rate

0.8

1.0

from sklearn.ensemble import RandomForestClassifier
forest_clf = RandomForestClassifier

(n_estimators=10@, random_state=42)
y_probas_forest = cross_val_predict(forest_clf,

X_train, y_train_5, cv=3, method="predict_proba")

score = proba of positive class
y_scores_forest = y_probas_forest[:, 1]
fpr_forest, tpr_forest, thresholds_forest =

roc curve(y train 5,y scores forest)

roc_auc_score(y_train_5, y_scores_forest)

9.9983436731328145

y_train_pred forest = cross_val predict(forest clf,
X_train, y_train_5, cv=3)

precision_score(y_train_5, y_train pred forest)

@.9905083315756169

recall score(y_train_5, y train_pred_forest)

0.8662608374838591
= The Random Forest classifier is superior to the SGD

classifier because its ROC curve is much closer to the
top-left corner, and it has a greater AUC

20

9/13/2020

10

MULTICLASS CLASSIFICATION

= Multiclass classifiers - aka multinomial classifiers are capable of distinguishing between more than two classes

= Algorithms such as SGD classifiers, Random Forest classifiers and Naive Bayes classifiers can handle multiple
classes natively

= Algorithms such as Logistic Regression or Support Vector Machines are strictly binary classifiers

= One-versus-the-rest (OVR) strategy for multiclass classification of MNIST dataset
= Train 10 binary classifiers - one for each digit ((a O-detector, a 1-detector, a 2-detector and son on)
= While classifying an image, get a decision score from each classifier for that image
= Select the class whose classifier outputs the highest score
= One-versus-One (OvO) strategy for multiclass classification of MNIST dataset
= Train a binary classifier for every pair of digits (one for distinguishing Os and 1s, another for distinguishing Os and 2s, and so on)
= |fthere are N classes, in total N x (N - 1) / 2 classifiers required
= For MNIST, this is training 45 binary classifiers!!

= Aclassifier needs to be trained on the part of the training set for the two classes it must distinguish

21
]
from sklearn.svm import SVC
svm_clf = SvC(gamma="auto", random state=42)
svm_clf.fit(X train[:16@0], y train[:16e8]) # y train, not y train 5
svm_clf.predict([some_digit])
array([5], dtype=uints)
some_digit scores = svm _clf.decision_function([some _digit])
some digit scores
array([[2.92492871, 7.82207499, 3.93648529, @.99117363, 5.96945968,
9.5 , 1.90718593, 8.02755689, -0.13202788, 4.94216947]])
= Scikit-Learn automatically detects whether the problem is of binary classification or multiclass classification
= [tautomatically runs OvVR or OvO
= |f SVM classifier is used, Scikit-Learn actually uses OvO strategy
= Trained 45 binary classifiers and got their decision score for images
22

9/13/2020

11

MULTICLASS CLASSIFICATION - SGD CLASSIFIER

sgd_clf.fit(X _train, y train)
sgd_clf.predict([some_digit])

array([5], dtype=uints)
= The decision_function()
sgd clf.decision function([some digit]) method now returns one

array([[-15955.22627845, -38088.96296175, -13326.66694897, value per class

573.52692379, -17680.6846644 , 2412.53175101, . o
-25526.86498156, -12290.15704709, -7946.05205023, Use cro§s va”datu)nfgr
-10631.35888549]]) evaluating this classifier
= Arandom classifier

would give 10%
array([0.8489802 , ©.87129356, 0.86938048]) accuracy

cross_val _score(sgd clf, X train, y_train, cv=3, scoring="accuracy™)

. Qi .
from sklearn.preprocessing import StandardScaler Simply scaling the

scaler = Standardscaler() inputs increases
X_train_scaled = scaler.fit_transform(X_train.astype(np.floate4d)) accuracy above 89%
cross val score(sgd clf, X train scaled, y train, cv=3, scoring="accuracy™)

array([0.89707059, ©.8960948 , ©.90693624])

23
ERROR ANALYSIS USING CONFUSION MATRIX - SGD CLASSIFIER
y_train_pred = cross val predict(sgd clf, X train_scaled, y train, cv=3)
conf_mx = confusion matrix(y train, y train pred)
cont mx
array([[5578, e, 22, 7, 8, 45, 35, 5, 222, 1],
[e, 6418, 35, 26, 4, A4, 4, 8, 198, 13],
[28, 27,5332, 19, 4, 3, 68, 7. P4, i,
[23; B; Ai5; 5354 2, 209, 26, 38, 373, 73],
[21, 14, a5, 12, 5919, 11; 23, 28; 299, 1#2],
[26, 36, 31, 173, 5S4, aasa, 76, 1%, a82, 65],
[21, a7 45, 2, 42, 98, 5556, 3y A3, 1];
[28; 98, 53 27, 5B, 13, 3, 5696, 173, 220],
[37, 64, &7, 91, = drs, @4, 1, 5871, 48],
[24; 48; 29; 6 Te, 34 1, 174, 329, 51521])
24

9/13/2020

12

ERROR ANALYSIS USING CONFUSION MATRIX - SGD CLASSIFIER

row_sums = conf_mx.sum(axis=1, keepdims=True)
norm_conf_mx = conf _mx / row_sums
np.fill diagonal(norm conf mx, 8)

plt.matshow(conf mx, cmap=plt.cm.gray)
save fig(“"confusion matrix_ plot",

tight_layout=False) plt.matshow(norm conf mx, cmap=plt.cm.gray)
plt.show() save_fig("confusion _matrix errors plot", tight layout=False)
plt.show()
0 2 4 6 8 0 5 a 6 g

25

MULTILABEL CLASSIFICATION Multi-Class

c=3
= Consider a face recognition classifier which recognizes several people in the Samples
same picture vAg N q
B O] L
= Say the classifier has been trained to recognize three faces, Alice, Bob, and v
Charlie (Labels (t)
= When the classifier is shown a picture of Alice and Charlie, it should output [001] [{00] [010]
[1, 0, 1] (meaning “Alice yes, Bob no, Charlie yes”). O
= Such a classification system that outputs multiple binary tags is called a
multilabel classification system Multi-Label
= To evaluate accuracy of multilabel classification, F1 score can be used for Samples
each individual label and compute average score
= This assumes that all labels are equally important O«i} (g@
= You can use weighted average in case of different level of importance to Labels (1
labels
(101 [©10] [111]

Figure source: https://medium.com/analytics-vidhya/multi-label-classification-using-fastai-a-shallow-dive-
into-fastai-data-block-api-54ea57b2c¢78b

26

9/13/2020

13

MULTIOUTPUT-MULTICLASS CLASSIFICATION

model output Difference

Test image model input

0 Ll -

10 1

<]

= Multioutput classification is a generalization of multilabel classification

= Each label can be multiclass more than two possible values)

= Consider a system which will take as input a noisy digit image, and will (hopefully) output a clean digit image

= The classifier's output is multilabel (one label per pixel) and each label can have multiple values (pixel intensity O to 255)
= The line between classification and regression is sometimes blurry, as in this example

= Predicting pixel intensity is more akin to regression than to classification

27

QUESTIONS?

28

9/13/2020

14

