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CSE353 – MACHINE LEARNING
MATHEMATICAL PRELIMINARIES
PRAVIN PAWAR, SUNY KOREA

SOME OF THE SLIDES ARE USED WITH PERMISSION FROM:

KRISTIN L. SAINANI, ASSOCIATE PROFESSOR, HEALTH AND RESEARCH POLICY, STANFORD UNIVERSITY. 

DESCRIPTIVE STATISTICS
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TYPES OF VARIABLES: OVERVIEW
DISCUSS AND GIVE EXAMPLE OF EACH

Categorical/
Qualitative Quantitative

continuousdiscreteordinalnominalbinary

2 categories +

more categories +

order matters +

numerical  +

uninterrupted

LOOKING AT DATA

  How are the data distributed? 
 Where is the center?

 What is the range?

 What’s the shape of the distribution (e.g., Gaussian, binomial, exponential, 
skewed)?

 Are there “outliers”?

 Are there data points that don’t make sense?

 90% information is contained in the graph
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FREQUENCY PLOTS
Categorical variables

 Bar Chart

 Used for categorical variables to show frequency 
or proportion in each category.

 Translate the data from frequency tables into a 
pictorial representation

BOX PLOT AND HISTOGRAMS: FOR CONTINUOUS VARIABLES

Continuous variables
 Box Plot
 Histogram
 To show the distribution (shape, center, range, 

variation) of continuous variables.
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MEASURES OF CENTRAL TENDENCY

 Mean

 The average; the balancing point 

 The mean is affected by extreme values/outliers

 Median

 The exact middle value

 In case of even observations, take middle two and 
average them

 The median is not affected by extreme values/outliers 

 Mode

 The value that appears most frequently

MEASURES OF VARIATION/DISPERSION

 Range

 Difference between the largest and the smallest observations.

 Percentiles/quartiles

 The first quartile, Q1, is the value for which 25% of the observations 
are smaller and 75% are larger

 Q2 is the same as the median (50% are smaller, 50% are larger)

 Only 25% of the observations are greater than the third quartile

 Interquartile range

 Interquartile range = 3rd quartile – 1st quartile = Q3 – Q1

 Standard deviation

 Most commonly used measure of variation

 Shows variation about the mean

 Has the same units as the original data

 Variance

 Average (roughly) of squared deviations of values from the mean
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COMPARING STANDARD DEVIATIONS

Mean = 15.5

S = 3.338
11    12    13    14    15    16    17    18    19    20   21

11    12    13    14    15    16    17    18    19    20   21

Data B

Data A

Mean = 15.5

S = 0.926

11    12    13    14    15    16    17    18    19    20   21

Mean = 15.5

S = 4.570

Data C

THE BEAUTY OF THE NORMAL CURVE - 68-95-99.7 RULE

 No matter what  and  are, the 
area between - and + is about 
68%

 The area between -2 and +2 is 
about 95%; and 

 The area between -3 and +3 is 
about 99.7%.  

 Almost all values fall within 3 
standard deviations. 

68% of the 
data

95% of the data

99.7% of the data
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SUMMARY OF SYMBOLS

 S2= Sample variance

 S = Sample standard dev

 2 = Population (true or theoretical) variance

  = Population standard dev.

 X = Sample mean

 µ = Population mean

 IQR = interquartile range (middle 50%)

WHAT’S THE VARIANCE AND STANDARD DEVIATION OF THE ROLL OF A DIE?

x p(x)
1 p(x=1)=1/6

2 p(x=2)=1/6

3 p(x=3)=1/6

4 p(x=4)=1/6

5 p(x=5)=1/6

6 p(x=6)=1/6
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Var(cX)= c2Var(X)

Multiplying each instance of the 
random variable by c makes it c-
times as wide of a distribution, which 
corresponds to c2 as much variance 
(deviation squared).  For example, if 
everyone suddenly became twice as 
tall, there’d be twice the deviation 
and 4 times the variance in heights 
in the population.

 

 

 

 

VARIANCE PROPERTIES
Var (c+X)= Var(X)

Adding a constant to every instance 
of a random variable doesn’t change 
the variability. It just shifts the whole 
distribution by c.  If everybody grew 5 
inches suddenly, the variability in the 
population would still be the same.

 

 

 

 

If c= a constant number (i.e., not a variable) 
and X and Y are random variables, then

Var(c) = 0

Var (c+X)= Var(X)

Var(cX)= c2Var(X)

Var(X+Y)= Var(X) + Var(Y)  

ONLY IF X and Y are independent!!!!

{Var(X+Y)= Var(X) + Var(Y)+2Cov(X,Y) 

IF X and Y are not independent}

PRACTICE PROBLEM

Find the variance and standard deviation for 
the number of ships to arrive at the harbor 
(recall that the mean is 11.3). 

x 10 11 12 13 14
P(x) .4 .2 .2 .1 .1
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VARIANCE AND STD DEV EXAMPLE

35.181.1)(

81.13.115.129)]([)()(

5.129)1(.196)1(.169)2(.144)2)(.121()4)(.100()()(
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xExExVar

xpxxE
i

ii

x2 100 121 144 169 196

P(x) .4 .2 .2 .1 .1

Interpretation: On an average day, we expect 11.3 ships to arrive in the 
harbor, plus or minus 1.35. This gives you a feel for what would be 
considered a usual day!

Find the variance and standard deviation for the number of ships to arrive at the 
harbor (recall that the mean is 11.3). 

EXAMPLES OF BAD GRAPHICS
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What’s wrong with this graph?

from: ER Tufte. The Visual Display of Quantitative Information. Graphics Press, Cheshire, Connecticut, 
1983, p.69

From: Visual Revelations: Graphical Tales of Fate and Deception from Napoleon Bonaparte to Ross Perot 
Wainer, H. 1997, p.29.

Notice the X-axis
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Correctly scaled X-axis…

from: ER Tufte. The Visual Display of Quantitative Information. Graphics Press, Cheshire, Connecticut, 
1983, p.74

What’s wrong with this graph?
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Diagraphics II, 1994

What’s the message here?

21

22



9/7/2020

12

Diagraphics II, 1994

From: Johnson 
R. Just the 
Essentials of 
Statistics. 
Duxbury Press, 
1995.
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From: Johnson 
R. Just the 
Essentials of 
Statistics. 
Duxbury Press, 
1995.

From: Johnson 
R. Just the 
Essentials of 
Statistics. 
Duxbury Press, 
1995.
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From: Johnson 
R. Just the 
Essentials of 
Statistics. 
Duxbury Press, 
1995.

PROBABILITY DISTRIBUTIONS

 Random variables

 Probability functions

 Expected value

 Covariance

27
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RANDOM VARIABLE

• Roughly, probability is how frequently we expect different outcomes to occur if we 
repeat the experiment over and over (“frequentist” view) 

• A random variable x takes on a defined set of values with different probabilities.
• For example, if you roll a die, the outcome is random (not fixed) and there are 6 possible outcomes, each 

of which occur with probability one-sixth.  

• For example, if you poll people about their voting preferences, the percentage of the sample that 
responds “Yes on Proposition 100” is also a random variable. 

 Discrete random variables have a countable number of outcomes
 Examples: Dead/alive, treatment/placebo, dice, counts, etc.

 Continuous random variables have an infinite continuum of possible values.
 Examples: blood pressure, weight, the speed of a car, the real numbers from 1 to 6.  

PROBABILITY FUNCTIONS

 A probability function maps the 
possible values of x against 
their respective probabilities of 
occurrence, p(x)

 p(x) is a number from 0 to 1.0.

 The area under a probability 
function is always 1.
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PROBABILITY MASS FUNCTION (PMF)

x p(x)

1 p(x=1)=1/6

2 p(x=2)=1/6

3 p(x=3)=1/6

4 p(x=4)=1/6

5 p(x=5)=1/6

6 p(x=6)=1/6

1.0

CUMULATIVE DISTRIBUTION FUNCTION (CDF)

x P(x≤A)

1 P(x≤1)=1/6

2 P(x≤2)=2/6

3 P(x≤3)=3/6

4 P(x≤4)=4/6

5 P(x≤5)=5/6

6 P(x≤6)=6/6

EXAMPLES
1. What’s the probability that you roll a 3 or less?   
P(x≤3)=1/2

2. What’s the probability that you roll a 5 or higher?  
P(x≥5) = 1 – P(x≤4) = 1-2/3 = 1/3

Which of the following are probability functions?
Hint: The sum of all probabilities is 1 and there is no negative probability.

a. f(x)=.25 for x=9,10,11,12 (YES)

b. f(x)= (3-x)/2 for x=1,2,3,4 (NO)

c.      f(x)= (x2+x+1)/25 for x=0,1,2,3 (NO)

31

32



9/7/2020

17

PRACTICE PROBLEM:

 The number of ships to arrive at a harbor on any given day is a random variable 
represented by x. The probability distribution for x is:

x 10 11 12 13 14

P(x) .4 .2 .2 .1 .1

Find the probability that on a given day:

a. exactly 14 ships arrive

b. At least 12 ships arrive

c. At most 11 ships arrive

p(x=14)= .1

p(x12)= (.2 + .1 +.1) = .4

p(x≤11)= (.4 +.2) = .6

PRACTICE PROBLEM:

You are lecturing to a group of 1000 students.  You ask them to each 
randomly pick an integer between 1 and 10.  Assuming, their picks 
are truly random:

• What’s your best guess for how many students picked the number 9?

Since p(x=9) = 1/10, we’d expect about 1/10th of the 1000 students to pick 9.  100 
students.

• What percentage of the students would you expect picked a number less than or 
equal to 6?

Since p(x≤ 6) = 1/10 + 1/10 + 1/10 + 1/10 + 1/10 + 1/10 =.6  (60%)
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CONTINUOUS CASE

 The probability function that accompanies a continuous random variable is a continuous 

mathematical function that integrates to 1.  

 The probabilities associated with continuous functions are just areas under the curve 

(integrals!).

 Probabilities are given for a range of values, rather than a particular value (e.g., the probability 

of getting a math SAT score between 700 and 800 is 2%).

 The probability that x is any exact particular value (such as 1.9976) 
is 0; we can only assign probabilities to possible ranges of x.  

 For example, the probability of x falling within 1 to 2:

CONTINUOUS CASE EXAMPLE

 For example, recall the negative exponential function 
(in probability, this is called an “exponential 
distribution”):  

 This function integrates to 1. 

 e is approximately equal to 2.71828.

xexf )(

110
0

0







 xx ee

23.368.135.  2)xP(1 12
2

1

2

1

  eeee xx

 .865  .135-1  -1 2)P(x 2  e
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EXAMPLE 2: UNIFORM DISTRIBUTION

 The uniform distribution: all values are equally likely

 The uniform distribution:
f(x)= 1 ,  for 1 x 0

x

p(x)

1

1

 We can see it’s a probability distribution because it 
integrates to 1 (the area under the curve is 1):

1011
1

0

1

0

 x

What’s the probability that x is between ¼ and ½?

x

p(x)

1

1¼ ½

P(½ x ¼ )= ¼ 

PRACTICE PROBLEM 
 Suppose that survival drops off rapidly in the year following diagnosis of a certain type of advanced cancer.  

Suppose that the length of survival (or time-to-death) is a random variable that approximately follows an 
exponential distribution with parameter 2 (makes it a steeper drop off):

]1102:[

2)( :functiony probabilit

0

2

0

2

2













 xx

T

eenote

eTxp
 What’s the probability that a person who is 

diagnosed with this illness survives a year? 

The probability of dying within 1 year can be calculated using 
the cumulative distribution function:

)(2

0

2 1)( T
T

x eeTxP  

135.)1(1 )1(2  e
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EXPECTED VALUE AND VARIANCE
 All probability distributions are characterized by an 

expected value and a variance (standard deviation 
squared).

 If we understand the underlying probability function of a 
certain phenomenon, then we can make informed decisions 
based on how we expect x to behave on-average over the 
long-run…(so called “frequentist” theory of probability).  

 Expected value is just the weighted average or mean (µ) of 
random variable x. Imagine placing the masses p(x) at the 
points X on a beam; the balance point of the beam is the 
expected value of x.   

 Recall the following probability distribution of ship arrivals:

One standard deviation 
from the mean ()

Mean ()

Bell-curve (normal) distribution

x 10 11 12 13 14

P(x) .4 .2 .2 .1 .1





5

1

3.11)1(.14)1(.13)2(.12)2(.11)4(.10)(
i

i xpx

EXPECTED VALUE, FORMALLY


  xall 

)( )p(xxXE ii

Discrete case:

Continuous case:

dx)p(xxXE ii
  xall

)( The symbol dx, called the differential of the variable x, 
indicates that the variable of integration is x.

Continuous case (uniform distribution)

x

p(x)
1

1
2

1
0

2

1

2
)1()(

1

0

21

0

 
x

dxxXE

E(X) = µ
Can be used interchangeably.

Expected value is an extremely 
useful concept for good 
decision-making! 
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EXAMPLE: THE LOTTERY

 The Lottery (also known as a tax on people who are bad at math…)

 A certain lottery works by picking 6 numbers from 1 to 49.  It costs $1.00 to play the lottery, and if 
you win, you win $2 million after taxes.  

 If you play the lottery once, what are your expected winnings or losses? 

x$ p(x)

-1 .999999928

+ 2 million 7.2 x 10--8

Calculate the probability of winning in 1 try:

The probability function (note, sums to 1.0):

“49 choose 6”

Out of 49 numbers, 
this is the number of 
distinct combinations 
of 6.

8-

49

6

10 x 7.2 
816,983,13

1

!6!43
!49

11










If you play the lottery every week for 
10 years, what are your expected 
winnings or losses?  

520 x (-.86) = -$447.20 

Expected Value

E(X) = P(win)*$2,000,000   +  P(lose)*-$1.00  
= 2.0 x 106 * 7.2 x 10-8+ .999999928 (-1) = .144 - .999999928 = -$.86  

Negative expected value is never good!  
You shouldn’t play if you expect to lose money!  

GAMBLING (OR HOW CASINOS CAN AFFORD TO GIVE SO MANY FREE 
DRINKS…)

A roulette wheel has the numbers 1 through 36, as well as 0 and 00.  If you bet $1 that 
an odd number comes up, you win or lose  $1 according to whether or not that event 
occurs.  If random variable X denotes your net gain, X=1 with probability 18/38 and X= -1 
with probability 20/38.  

E(X) = 1(18/38) – 1 (20/38) = -$.053

On average, the casino wins (and the player loses) 5 cents per game.  

The casino rakes in even more if the stakes are higher:

E(X) = 10(18/38) – 10 (20/38) = -$.53

If the cost is $10 per game, the casino wins an average of 53 cents per game.  If 10,000 
games are played in a night, that’s a cool $5300.

41
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EXPECTED VALUE OF A COIN TOSS

Intuitively, we’d probably all agree that we expect around 50 heads, right?

Another way to show this

Think of tossing 1 coin.  E(X=number of heads)  = (1) P(heads)  + (0)P(tails) 

E(X=number of heads) = 1(.5) + 0  = .5

If we do this 100 times, we’re looking for the sum of 100 tosses, where we assign 1 for a heads and 0 for a tails. 

E(X1 +X2 +X3 +X4 +X5 …..+X100) = E(X1) + E(X2) + E(X3)+ E(X4)+ E(X5) …..+ E(X100) =

100 E(X1)  =  50

You toss a coin 100 times.  What’s the expected number of heads?  What’s the variance of the number of heads?

VARIANCE IN 100 COIN TOSS
What’s the variability, though?  More tricky.  But, again, we could do this for 1 coin and then use our rules of variance.

Think of tossing 1 coin.  

E(X2=number of heads squared) = 12 P(heads) + 02 P(tails)

E(X2) = 1(.5) + 0  = .5

Var(X) = .5 - .52 =  .5 - .25  = .25

Then, using our rule: Var(X+Y)= Var(X) + Var(Y)    (coin tosses are independent!)

Var(X1 +X2 +X3 +X4 +X5 …..+X100) = Var(X1) + Var(X2) + Var(X3)+ Var(X4)+ Var(X5) …..+ Var(X100) =

100 Var(X1)  =  100 (.25) = 25

SD(X)=5

Interpretation: When we toss a coin 100 
times, we expect to get 50 heads plus or 
minus 5. 

The variance of X is equal to the mean of 
the square of X minus the square of the 
mean of X. 
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OR USE COMPUTER SIMULATION…

 Flip coins virtually!

 Flip a virtual coin 100 times; count 
the number of heads.

 Repeat this over and over again a 
large number of times (we’ll try 
30,000 repeats!)

 Plot the 30,000 results.

Mean = 50

Std. dev = 5

Follows a normal distribution

95% of the time, we get 
between 40 and 60 heads… 

COVARIANCE: JOINT PROBABILITY

 The covariance measures the strength of the linear relationship between two 
variables

 The covariance: 

),())((σ
1




N

i
iiyixixy yxPyx 

)])([( yx yxE  

 The sample covariance:

1

))((
),(cov 1








n

YyXx
yx

n

i
ii

 Covariance between two random variables:

cov(X,Y) > 0         X and Y are positively correlated

cov(X,Y) < 0         X and Y are inversely correlated

cov(X,Y) = 0         X and Y are independent
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BAYES’ THEOREM

 Conditional probability: Conditional probability is denoted by  𝑃(𝐵=𝑏∣𝐴=𝑎). It is the probability of  𝐵=𝑏, provided that  
𝐴=𝑎 has occurred.

 Multiplication rule: It is denoted by 𝑃(𝐴,𝐵)=𝑃(𝐵∣𝐴)𝑃(𝐴). It says that the probability that Events A and B both occur is 
equal to the probability that Event A occurs times the probability that Event B occurs, given that A has occurred. 

 Bayes’ theorem is given by: 

 where A and B are two events and P(B) ≠ 0

 P(A ∣ B) is the conditional probability of event A occurring given that B is true.

 P(B ∣ A) is the conditional probability of event B occurring given that A is true.

 P(A) and P(B) are the probabilities of A and B occurring independently of one another.

 Examples: https://betterexplained.com/articles/an-intuitive-and-short-explanation-of-bayes-theorem/

APPLICATIONS OF PROBABILITY

 What is the probability the patient has AIDS if the test comes back positive, i.e., 𝑃(𝐻=1∣𝐷1=1)?

 Assume that the population is quite healthy, e.g.,  𝑃(𝐻=1)=0.0015.
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ANSWER

IMPORTANT 
DISCRETE 
DISTRIBUTIONS

 Binomial

 Yes/no outcomes (dead/alive, 
treated/untreated, 
smoker/non-smoker, 
sick/well, etc.)

 Poisson

 Counts (e.g., how many cases 
of disease in a given area)

49
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BINOMIAL PROBABILITY DISTRIBUTION
 A fixed number of observations (trials), n

 e.g., 15 tosses of a coin; 20 patients; 1000 people surveyed

 A binary random variable
 e.g., head or tail in each toss of a coin; defective or not defective light bulb
 Generally called “success” and “failure”
 Probability of success is p, probability of failure is 1 – p

 Constant probability for each observation
 e.g., Probability of getting a tail is the same each time we toss the coin

BINOMIAL EXAMPLE
Take the example of 5 coin tosses.  What’s the probability that you flip exactly 3 heads in 5 coin tosses?

Solution:

One way to get exactly 3 heads:  HHHTT

What’s the probability of this exact arrangement?

P(heads)xP(heads) xP(heads)xP(tails)xP(tails) =(1/2)3 x (1/2)2

Another way to get exactly 3 heads:  THHHT

Probability of this exact outcome = (1/2)1 x (1/2)3 x (1/2)1  =  (1/2)3 x (1/2)2

In fact, (1/2)3 x (1/2)2 is the probability of each unique outcome that has exactly 3 heads and 2 tails.

So, the overall probability of 3 heads and 2 tails is:

(1/2)3 x (1/2)2 + (1/2)3 x (1/2)2 + (1/2)3 x (1/2)2 + ….. for as many unique arrangements as there are—but how many are there??

51
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Outcome Probability 
THHHT (1/2)3 x (1/2)2

HHHTT             (1/2)3 x (1/2)2

TTHHH (1/2)3 x (1/2)2

HTTHH (1/2)3 x (1/2)2

HHTTH (1/2)3 x (1/2)2

THTHH (1/2)3 x (1/2)2

HTHTH (1/2)3 x (1/2)2

HHTHT (1/2)3 x (1/2)2

THHTH (1/2)3 x (1/2)2

HTHHT (1/2)3 x (1/2)2

10 arrangements x (1/2)3 x (1/2)2  

The probability 
of each unique 
outcome  (note: 
they are all 
equal)

ways to 
arrange 3 
heads  in 
5 trials







 5

3

5C3 = 5!/3!2!  = 10

P(3 heads and 2 tails) = x P(heads)3 x P(tails)2 = 

10 x (½)5=31.25%

BINOMIAL DISTRIBUTION FUNCTION:
X= THE NUMBER OF HEADS TOSSED IN 5 COIN TOSSES

x0 3 4 51 2

number of heads

p(x)

number of heads XnX
n

X
pp 








)1(

1-p = probability of failure

p = probability of successX = # successes out of n
trials

n = number of trials

Note the general pattern emerging  if you have only 
two possible outcomes (call them 1/0 or yes/no or 
success/failure) in n independent trials, then the 
probability of exactly X “successes”= 
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DEFINITIONS: BINOMIAL

 Binomial: Suppose that n independent experiments, or trials, are performed, where n is a fixed number, and that 
each experiment results in a “success” with probability p and a “failure” with probability 1-p.  The total number of 
successes, X, is a binomial random variable with parameters n and p.

 We write: X ~ Bin (n, p) {reads: “X is distributed binomially with parameters n and p}

 And the probability that X=r (i.e., that there are exactly r successes) is:

rnr
n

r
pprXP 






 )1()(

DEFINITIONS: BERNOULLI
 Bernouilli trial: If there is only 1 trial with probability of success p and probability of failure 1-p, this is called a 

Bernouilli distribution. (special case of the binomial with n=1)

pppXP 





 111

1

1
)1()1( pppXP 






  1)1()0( 010

1

0
Probability of success Probability of failure

BINOMIAL DISTRIBUTION: EXAMPLE
 If I toss a coin 20 times, what’s the probability of getting exactly 10 heads?

176.)5(.)5(. 1010
20

10









 If I toss a coin 20 times, what’s the probability of getting of getting 2 or fewer heads?

4

4720182
20

2

5720191
20

1

720200
20

0

108.1

108.1105.9190)5(.
!2!18

!20
)5(.)5(.

109.1105.920)5(.
!1!19

!20
)5(.)5(.

105.9)5(.
!0!20

!20
)5(.)5(.



































x

xxx

xxx

x
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MULTINOMIAL DISTRIBUTION 

The multinomial is a generalization of the binomial.  It is used when there are more than 2 possible outcomes (for ordinal 
or nominal, rather than binary, random variables).

 Instead of partitioning n trials into 2 outcomes (yes with probability p / no with probability 1-p), you are partitioning n trials into 3 or more 
outcomes (with probabilities: p1, p2, p3,..)

 General formula for 3 outcomes: 

Specific Example: if you are randomly choosing 8 people from an audience that contains 50% democrats, 30% republicans, 
and 20% green party, what’s the probability of choosing exactly 4 democrats, 3 republicans, and 1 green party member?

z
RD

y
R

x
D pppp

zyx

n
zGyRxDP )1(

!!!

!
),,( 

134 )2(.)3(.)5(.
!1 !3 !4

!8
)1,3,4(  GRDP

POISSON DISTRIBUTION 

 Poisson distribution is for counts—if events happen at a constant rate over time, the Poisson 
distribution gives the probability of X number of events occurring in time T.

POISSON MEAN AND VARIANCE

 Mean

 Variance and Standard Deviation

 

 2

 
where  = expected number of hits in a given time period

For a Poisson random variable, the 
variance and mean are the same!
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POISSON DISTRIBUTION EXAMPLE
The Poisson distribution models counts, such as the number of new cases of SARS that occur in women in New England next month.  

The distribution tells you the probability of all possible numbers of new cases, from 0 to infinity.  

If X= # of new cases next month and X ~ Poisson (), then the probability that X=k (a particular count) is: 

!
)(

k

e
kXp

k  



For example, if new cases of West Nile 
Virus in New England are occurring at a 
rate of about 2 per month, then these are 
the probabilities that: 0,1, 2, 3, 4, 5, 6, to 
1000 to 1 million to… cases will occur in 
New England in the next month:

!0

2 20 e

!1

2 21 e

!2

2 22 e

!3

2 23 e

X P(X)

0 =.135

1 =.27

2 =.27

3 =.18

4 =.09

5

… …

MORE ON POISSON…

“Poisson Process” (rates)

Note that the Poisson parameter  can be 
given as the mean number of events that 
occur in a defined time period OR, 
equivalently,  can be given as a rate, such 
as =2/month (2 events per 1 month) that 
must be multiplied by t=time (called a 
“Poisson Process”) 

X ~ Poisson ()

!

)(
)(

k

et
kXP

tk  



E(X) = t
Var(X) = t

1a.  If calls to your cell phone are a Poisson process with a constant rate =2 
calls per hour, what’s the probability that, if you forget to turn your phone off in 
a 1.5 hour movie, your phone rings during that time? 

X ~ Poisson (=2 calls/hour)

P(X≥1)=1 – P(X=0)

05.
!0

)3(

!0

)5.1*2(
)0( 3

30)5.1(20

 


e
ee

XP

P(X≥1)=1 – .05 = 95% chance

1b. How many phone calls do you expect to get during the movie?

E(X) = t = 2(1.5) = 3
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GOAL

 Data storage, manipulation and preprocessing are 
fundamental to machine learning. 

 This lecture provides a rapid introduction to basic and 
frequently-used mathematics used in machine 
learning 

 Matrix operations and their implementations

 Bit of calculus and probability

 For further understanding of all of the mathematical 
content, review Chapter 18 (Appendix - Mathematics 
for Deep Learning) from the book “Dive into Deep 
Learning ”

IPYTHON

 Interactive Python started in 2001 as an enhanced Python interpreter

 Developed by Fernando Perez as “Tools for the entire life cycle of research computing”

 If Python is Engine, IPython as the interactive control panel. 

 Closely tied with the Jupyter project which provides browser based notebook

 Two modes

 IPython shell (Anaconda prompt -> Ipython)

 Jupyter notebook (Anaconda prompt -> jupyter ntoebook)

61

62



9/7/2020

32

IPYTHON FEATURES

 Refer to online notebooks:

 https://github.com/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/01.00-
IPython-Beyond-Normal-Python.ipynb

DATA AS NUMBERS

 Datasets can come from a wide range of sources and formats

 E.g. documents, images, sound clips, numerical measurements

 Data is fundamentally array of numbers

 Digital images are 2D arrays of numbers representing pixel brightness across the area

 Sound clips are 1D arrays of intensity versus time 

 Text can be converted in various ways into numerical representations

 First step in making data analyzable is to transform it into arrays of numbers

 Both, NumPy and Pandas package efficiently store and manipulate numerical arrays
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NUMPY

 Stands for Numerical Python

 Efficient interface to store and operate on dense data buffers

 NumPy arrays are similar to Python’s built-in list type, but provide much more efficient storage and data 
operations for larger arrays

 Form the core of data science tools in Python 

NUMPY FEATURES

 Refer to online notebooks:

 https://github.com/jakevdp/PythonDataScienceHandbook/blob/8a34a4f653bdbdc01415a94
dc20d4e9b97438965/notebooks/02.00-Introduction-to-NumPy.ipynb
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TENSORFLOW

 Deep learning framework released by Google in November 2015

 Deep learning does a wonderful job in pattern recognition, especially in the 
context of images, sound, speech, language, and time-series data.

 Installation: https://www.tensorflow.org/install/

 Examples and tutorials: https://github.com/tensorflow/examples

WHAT IS A TENSOR

 A tensor is a mathematical object and a generalization of scalars, vectors and matrices.

 A tensor can be represented as a multidimensional array. 

 A tensor with zero rank (order) is a scalar. 

 A tensor with rank 1 is a vector/array. 

 Matrix is a tensor of rank 2. 

 5: This is a rank 0 tensor; this is a scalar with shape [ ].

 [2.,5., 3.]: This is a rank 1 tensor; this is a vector with shape [3].

 [[1., 2., 7.], [3., 5., 4.]]: This is a rank 2 tensor; it is a matrix with shape [2, 3].

 [[[1., 2., 3.]], [[7., 8., 9.]]]: This is a rank 3 tensor with shape [2, 1, 3].
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CONVERT IMAGE TO A TENSOR

SCALARS

 Scalar is the value consisting of just one numerical quantity

 A scalar is represented by a tensor with just one element. 

 In the next snippet, we instantiate two scalars and perform some familiar arithmetic operations with them, namely 
addition, multiplication, division, and exponentiation
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VECTORS
 A list of scalar values. We call these values the elements (entries or components) of the vector

 In ML vectors represent examples from the dataset and their values hold some real-world significance

 E.g., if we were training a model to predict the risk that a loan defaults, we might associate each applicant 
with a vector whose components correspond to their income, length of employment, number of previous 
defaults, and other factors.

 In math, a vector x can be written as:

LENGTH, DIMENSIONALITY AND SHAPE

 The length of a tensor is given by Python's built-in len() function

 The shape is a tuple that lists the length (dimensionality) along each axis of the tensor. For tensors with just one 
axis, the shape has just one element
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MATRICES

 Matrices generalize vectors from order one to order two

 For any  𝐀∈ℝ𝑚×𝑛 , the shape of  𝐀 is ( 𝑚 ,  𝑛 ) or  𝑚×𝑛 . Specifically, when a 
matrix has the same number of rows and columns, its shape becomes a 
square; thus, it is called a square matrix.

 We can create an  𝑚×𝑛 matrix by specifying a shape with two components  𝑚
and  𝑛 when calling any of our favorite functions for instantiating a tensor.

MATRIX TRANSPOSE
 When we exchange a matrix's rows and columns, the result is called the transpose of 

the matrix

 We signify a matrix  𝐀 's transpose by  𝐀⊤ and if  𝐁=𝐀⊤ , then  𝑏𝑖𝑗=𝑎𝑗𝑖 for any  𝑖 and  𝑗

 A symmetric matrix 𝐀 is equal to its transpose 𝐀⊤
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BASIC PROPERTIES OF TENSOR ARITHMETIC

 Given any two tensors with the same shape, the result of any binary elementwise operation will be a tensor of 
that same shape.

HADAMARD PRODUCT

 Elementwise multiplication of two matrices is called their Hadamard product (math notation  ⊙)
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REDUCTION – SUM OF TENSOR ELEMENTS

REDUCTION – ROWWISE (AXIS=0), COLUMNWISE (AXIS=1)
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MEAN AKA AVERAGE

NON-REDUCTION SUM, CUMULATIVE SUM 

 Keep the number of axes unchanged when invoking the function for calculating the sum or mean

 Calculate cumulative sum of elements of A along some axis (e.g. axis=0 by row) 
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DOT PRODUCT

MATRIX-VECTOR PRODUCTS
 Let A be matrix represented using its row vectors

 The matrix-vector product  𝐀𝐱 is simply a column vector of length  𝑚 , whose  𝑖th element is the dot product  𝐚𝑖⊤𝐱

MATRIX-MATRIX 
MULTIPLICATION
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NORMS
 Informally, the norm of a vector tells us how big a vector is in the magnitude

 The norm must be non-negative

L1 NORM
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CALCULUS – METHOD OF EXHAUSTION
 The method of exhaustion is a method of finding the area of a shape by inscribing inside it a sequence of polygons 

whose areas converge to the area of the containing shape

 If the sequence is correctly constructed, the difference in area between the nth polygon and the containing shape 
will become arbitrarily small as n becomes large

 As this difference becomes arbitrarily small, the possible values for the area of the shape are systematically 
"exhausted" by the lower bound areas successively established by the sequence members

 Euclid used this method to prove certain propositions

 The area of circles is proportional to the square of their diameters

 The volumes of two tetrahedra of the same height are proportional to the areas of their triangular bases

 Integral calculus originated from the method of exhaustion

OPTIMIZATION AND GENERALIZATION IN MACHINE LEARNING MODELS

 In machine learning, we train models, updating them successively so that they get better and 
better as they see more and more data

 Getting better means minimizing a loss function, a score that answers the question "how bad is 
our model?" 

 We really care about is producing a model that performs well on data that we have never seen 
before

 But we can only fit the model to data that we can actually see

 The task of fitting models can be decomposed into two key concerns: 

 i) Optimization: the process of fitting our models to observed data; 

 ii) Generalization: the mathematical principles and practitioners' wisdom that guide as to how to produce 
models whose validity extends beyond the exact set of data examples used to train them
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DERIVATIVE AND DIFFERENTIATION
 In machine learning, loss functions are differentiable with respect to model parameters

 For each parameter, determine how rapidly the loss would increase or decrease if we make a small change to the 
parameter

 For a function f with input and output as scalars, the derivative of f is defined as:

EXAMPLE: 
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DIFFERENTIATION RULES

PARTIAL DERIVATIVE
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GRADIENTS

 A gradient is a vector whose components are the partial derivatives of a multivariate function with respect to 
all its variables

 Example: Say that we have a function, f(x,y) = 3x²y. Our partial derivatives are:

 If we organize these partials into a horizontal vector, we get the gradient of f(x,y), or ∇ f(x,y):

 Gradient vector points to the direction of greatest increase of a function

 Gradient is zero at local maximum or local minimum (as there is no single direction of increase)

Explanatory video: https://www.youtube.com/watch?v=GkB4vW16QHI
Further info: https://betterexplained.com/articles/vector-calculus-understanding-the-gradient/

CHAIN RULE

 The chain rule enables us to differentiate composite functions

 Suppose that functions  𝑦=𝑓(𝑢)  and  𝑢=𝑔(𝑥)  are both differentiable, then the chain rule states that:
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CHAIN RULE EXAMPLE

 For more examples see: https://mathinsight.org/chain_rule_simple_examples
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