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TYPES OF VARIABLES: OVERVIEW
DISCUSS AND GIVE EXAMPLE OF EACH

Categorical/
Qualitative Quantitative
binary | | nominal | | ordinal | | discrete | | continuous

2 categories +
more categories +
order matters +
numerical +

uninterrupted

LOOKING AT DATA

v How are the data distributed?
= Where is the center?
= What is the range?

= What’s the shape of the distribution (e.g., Gaussian, binomial, exponential,
skewed)?

v Are there “outliers”?

v" Are there data points that don’t make sense?

v' 90% information is contained in the graph

9/7/2020



FREQUENCY PLOTS

Categorical variables
= Bar Chart

= Used for categorical variables to show frequ
or proportion in each category.

ency

= Translate the data from frequency tables into a

pictorial representation

200.0 T

1833+

166.7 1
Z 1500+
3 1333
@ 1167+
S 1000+
S 83+
§' 66.7
7 500

33.3
16.7 -
0.0

12 3 4 5 6 7 8

Shock Index Category

Much easier to
extract information
from a bar chart
than from a table!

Number of Patients

c24

Pulmonary Embolism

BOX PLOT AND HISTOGRAMS: FOR CONTINUOUS VARIABLES

Continuous variables
= Box Plot
= Histogram

= To show the distribution (shape, center, range,

variation) of continuous variables.

25.0 Bins of size 0.1
16.7 K
=
Q
<
(5]
o
8.3
0.0
0.0 0.7 1.3 20

S

Shock Index Units

2.0

1.3

0.7

0.0

® «——— maxmum (1.7)

«——— Outliers

«  Q3+15IQR=
8+1.5(25)=1175

“whisker ——

interquartile range
(IQR) = 8-55= 25

_{

+«—— 75th percentile (0.8)

«——— median (66)
<«<——— 25th percentile (0.35)

N

— «——— minimum (or Q1-
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MEASURES OF CENTRAL TENDENCY

2000 2 @
0123456789 10 0123456788910

3
Mean t

= The average; the balancing point Mean =4

= The mean is affected by extreme values/outliers 142434445 3 15 L, 14243454410 B 20 B
Median 5 5 5 5

I

= The exact middle value

= In case of even observations, take middle two and

average them 01 2

456789 10 01 2 45678910

1
ode

= The value that appears most frequently

—p )

= The median is not affected by extreme values/outliers

MEASURES OF VARIATION/DISPERSION

= Range | 25% | 25% | 25% 25%
= Difference between the largest and the smallest observations.
¢ 1 1 1
= Percentiles/quartiles Q1 Q2 Q3
= The first quartile, Q,, is the value for which 25% of the observations _
are smaller and 75% are larger Median
it at (Q2) @3 maximum
= Q,is the same as the median (50% are smaller, 50% are larger) TR
= Only 25% of the observations are greater than the third quartile 25% 25%
= |Interquartile range 15 35 49 65 94
= Interquartile range = 3 quartile - 1%t quartile = Q5 - Q,
= Standard deviation Interquartile range

=65-35=230
= Most commonly used measure of variation

=  Shows variation about the mean

= Has the same units as the original data

= Variance Z(xi _)?)2
SZ = i

= Average (roughly) of squared deviations of values from the mean

n—1
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COMPARING STANDARD DEVIATIONS

Q_Q_Q—:_Q_Q—Q

1 12 13 14 15 16 17 18

oY

19 20 21

1 12 13 14 15 16 17 18

i

19 20 21

o

1 12 13 14 15 16 17 18

19 20 21

Mean = 15.5
S =3338

Mean = 15.5
S =092

Mean = 15.5
S = 4570

THE BEAUTY OF THE NORMAL CURVE - 68-95-99.7 RULE

= No matter what p and o are, the
area between -6 and ptc is about
68%

= The area between p-2c and pt+2c 1s
about 95%; and

= The area between p-30 and p+36 15
about 99.7%.

= Almost all values fall within 3
standard deviations.

10
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SUMMARY OF SYMBOLS

= S?= Sample variance

S = Sample standard dev

o =Population (true or theoretical) variance

o = Population standard dev.

X = Sample mean

u = Population mean

IQR = interquartile range (middle 50%)

11
;. |
WHAT’S THE VARIANCE AND STANDARD DEVIATION OF THE ROLL OF A DIE?
: p(x:‘;;lws
2 p(x=2)=1/6
3 p(x=3)=1/6
4 p(x=4)=1/6
—— ragese -
1 1 1 1 1 1. 21
E(x)= ;xx,-p(x,-) = (1)(3) + Z(g) + 3(5) + 4(5) + S(g) + 6(3) == 3.5
E(x*) =) xp(x;)= (1)(1) +4(1) +9(1) +16(l) +25(l)+ 36(1) =15.17
e 6 6 6 6 6 6
ol =Var(x)=E(x")-[E(x)]* =15.17-3.5 =2.92
o, =+292=1.71
12
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VARIANCE PROPERTIES

If c= a constant number (i.e., not a variable)
and X and Y are random variables, then

=Var(c) =0

=Var (c+X)= Var(X)

=Var(cX)= c2Var(X)

=Var(X+Y)= Var(X) + Var(Y)

ONLY IF X and Y are independent!!!!
={Var(X+Y)= Var(X) + Var(Y)+2Cov(X,Y)

IF X and Y are not independent}

Var (c+X)= Var(X)

Adding a constant to every instance
of a random variable doesn’t change
the variability. It just shifts the whole
distribution by c. If everybody grew 5
inches suddenly, the variability in the
population would still be the same.

Var(cX)= c2Var(X)

Multiplying each instance of the
random variable by ¢ makes it c-
times as wide of a distribution, which
corresponds to ¢2 as much variance
(deviation squared). For example, if
everyone suddenly became twice as
tall, there’'d be twice the deviation
and 4 times the variance in heights
in the population.

..

13
PRACTICE PROBLEM
Find the variance and standard deviation for
the number of ships to arrive at the harbor
(recall that the mean is 11.3).
) ¢ 10 1 12 13 14
Px) 4 2 @2 @A A
14
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VARIANCE AND STD DEV EXAMPLE

Find the variance and standard deviation for the number of ships to arrive at the
harbor (recall that the mean is 11.3).

x2 100 121 144 169 196
P(x) .4 2 2 A A

E(x?)= ZS: x.2 p(x;) =(100)(4) + (121)(.2) + 144(.2) + 169(.1) + 196(.1) =129.5

i=1
Var(x)=E(x*) -[E(x)]* =129.5-11.3* =1.81
stddev(x) =+/1.81=1.35

Interpretation: On an average day, we expect 11.3 ships to arrive in the
harbor, plus or minus 1.35. This gives you a feel for what would be
considered a usual day!

15

EXAMPLES OF BAD GRAPHICS

16
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s THE SHRINKING FAMILY DOCTOR
In California What'’s wrong with this graph?

Percentage of Doctors Devoted Solely to Family Practice

from: ER Tufte. The Visual Display of Quantitative Information. Graphics Press, Cheshire, Connecticut,
1983.p.69

17

S - Incomes of Doctors
Vs. Other Professionals

{MEDIAN NET INCOMES)
HHOURCE: Councll &0 Wagn and Brze Seuhiline

52,759

OFFICED-BASED
NONSALARIED PHYSICIANS

Notice the X-axis

saaz GTH
MALE PROFESSIOMAL
. SICAL ARD KINMDR
103 TRA7 1951 19585 1983 1RG5 1947 1970 1972 1073 1WA I97F 199

ERT -

From: Visual Revelations: Graphical Tales of Fate and Deception from Napoleon Bonaparte to Ross Perot
Wainer, H. 1997, p.29.

18
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Correctly scaled X-axis...

Physicians’ ipcome Tias orown expinéndially sivce 1939
Whereas oiliet professionaly? ineune Ros gone up linesely

&1 Madkeare brgen

Tngome (thowsoods af dolbars)

LES
w.
] T T T T 1
1gld 124d M50 IscD TAT2 1uan
Yenr
19
]
323 «  Before stricter Connecncour Traffic Pleachs,
enforcement Before (19535) and After (19356)
Sericrer Enforcement by the Police
Agamnst Cars Exceeding Speed limit
What's wrong with this graph?
s Afrer stricter
enfor it
2745 L
1044 1056

from: ER Tufte. The Visual Display of Quantitative Information. Graphics Press, Cheshire, Connecticut,
1983, p.74

20
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A few more data points add immensely to the account:
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. Connecticut Traffic Dieaths,
193121939
00
S

278 .

-
250 = \/\ l-“‘_““-

-
-

23§ =

Bk i i L L L i 1

1051 1953 1058 1057 1950

11986

1985

VsoTHERYS

Diagraphics 11, 1994

11



Satheby's / Christie's Worldwide Sales

Sotheby's

Market Share (%)

Christie's

O] oo o
50
ol —e e
30
20

1985 1986

Diagraphics 11, 1994

1087 1988 1989 1990
Year

23

From: Johnson
R. Just the
Essentials of
Statistics.
Duxbury Press,
1995.

24
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From: Johnson
R. Just the
Essentials of
Statistics.
Duxbury Press,
1995.

1
18
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i el : - From: Johnson
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19 24 29 39 49 59 64 over Statistics.
Duxbury Press,
Age of driver 1995.
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Number of drivers fatally injured (x10)
T

gL
6
4l
2F e
| R H__'__—_‘H“'ﬁ_
T : -
e Under 18 20 21 25 30 40 50 60 65
' 18 and o o to to to to and }
59 64 over 7

s 19 24 29 39 49

———  Ageofdriver

From: Johnson
R. Just the
Essentials of
Statistics.
Duxbury Press,
1995.

27
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PROBABILITY DISTRIBUTIONS
= Random variables
= Probability functions
= Expected value
= Covariance
28
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RANDOM VARIABLE

* Roughly, probability is how frequently we expect different outcomes to occur if we
repeat the experiment over and over (“frequentist” view)

¢ Arandom variable x takes on a defined set of values with different probabilities.

e For example, if you roll a die, the outcome is random (not fixed) and there are 6 possible outcomes, each

of which occur with probability one-sixth.

* For example, if you poll people about their voting preferences, the percentage of the sample that
responds “Yes on Proposition 100 is also a random variable.

Discrete random variables have a countable number of outcomes

= Examples: Dead/alive, treatment/placebo, dice, counts, etc.

Continuous random variables have an infinite continuum of possible values.

= Examples: blood pressure, weight, the speed of a car, the real numbers from 1 to 6.

29

PROBABILITY FUNCTIONS

= A probability function maps the
possible values of x against
their respective probabilities of
occurrence, p(x)

= p(x) is a number from O to 1.0.

= The area under a probability
function is always 1.

16 _|

p(x)

milNEL

1 2 3 4 5 6

D Px)=1

all x

30
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PROBABILITY MASS FUNCTION (PMF) CUMULATIVE DISTRIBUTION FUNCTION (CDF)

X P X P(x<A)

1 p(x=1)=1/6 1 P(x<1)=1/6
2 p(x=2)=1/6 2 P(x<2)=2/6
3 p(x=3)=1/6 3 P(x<3)=3/6
4 p(x=4)=1/6 4 P(x<4)=4/6
5 p(x=5)=1/6 5 P(x<5)=5/6
6 p(x=6)=1/6 6 P(x<6)=6/6

1.0

31

EXAMPLES

1. What's the probability that you roll a 3 or less?
P(x<3)=1/2

2. What'’s the probability that you roll a 5 or higher?
P(x>5)=1 - P(x<4)=1-2/3=1/3

Which of the following are probability functions?
Hint: The sum of all probabilities is 1 and there is no negative probability.

a. f(x)=.25 for x=9,10,11,12 (YES)
b. f(x)=(3-x)/2 forx=1,2,3,4 (NO)

c. f(x)= (x3+x+1)/25 for x=0,1,2,3 (NO)

32
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PRACTICE PROBLEM:

= The number of ships to arrive at a harbor on any given day is a random variable
represented by x. The probability distribution for x is:

x 10 1 12 13 14
P(x) 4 2 2 A A

Find the probability that on a given day:

a. exactly 14 ships arrive pix=14)=.1
b. Atleast 12 ships arrive px212)=(2+.1+1)=.4
c. At most 11 ships arrive Pp(xSI)=(4+2)=.6

33

PRACTICE PROBLEM:

You are lecturing to a group of 1000 students. You ask them to each
randomly pick an integer between 1 and 10. Assuming, their picks
are truly random:

*  What's your best guess for how many students picked the number 97?

Since p(x=9) = 1/10, we’'d expect about 1/10t" of the 1000 students to pick 9. 100
students.

*  What percentage of the students would you expect picked a number less than or
equal to 67
Since p(x< 6) =1/10 + 1/10 + 1/10 + 1/10 + 1/10 + 1/10 =.6 (60%)

34
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CONTINUOUS CASE

. The probability function that accompanies a continuous random variable is a continuous

mathematical function that integrates to 1.

L] The probabilities associated with continuous functions are just areas under the curve
(integrals!).
. Probabilities are given for a range of values, rather than a particular value (e.g., the probability

of getting a math SAT score between 700 and 800 is 2%).

35
]
] The probability that x is any exact particular value (such as 1.9976)
_ X is O; we can only assign probabilities to possible ranges of x.
fx)=e
. For example, recall the negative exponential function plx)=e>
(in probability, this is called an “exponential
distribution”): 1
This function integrates to 1.
e is approximately equal to 2.71828.
X
+00 +o0
fer=—e | =0+1=1 o
0 For example, the probability of x falling within 1 to 2:
0
px)=e*
2 2
- - -2 -1
P(le£2)=.[ex=—ex e’ ——e ' =—135+.368=.23 1
] 1
X
-2
P(x <2)=1-e2=1-.135=.865 12
36

9/7/2020
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EXAMPLE 2: UNIFORM DISTRIBUTION

= The uniform distribution: all values are equally likely What's the probability that x is between 4 and 72?
= The uniform distribution: px)

fx)=1, for 1>x>0

1
P
1
Ya Vi 1 x
x
1

P(% 2x> Vi)=Y
We can see it’s a probability distribution because it
integrates to 1 (the area under the curve is 1):

1
Il =x | =1-0=1
0 0
37
;. |
PRACTICE PROBLEM
= Suppose that survival drops off rapidly in the year following diagnosis of a certain type of advanced cancer.
Suppose that the length of survival (or time-to-death) is a random variable that approximately follows an
exponential distribution with parameter 2 (makes it a steeper drop off):
probability function : p(x =T) =2e "
= What's the probability that a person who is
diagnosed with this illness survives a year?
% +o0
[note: I2e’2x = =0+1=1]
0
0
The probability of dying within 1 year can be calculated using
the cumulative distribution function:
T
P(x<T)=—e" | =1—-¢?D
1-(1-e?M)=.135
38

9/7/2020

19



EXPECTED VALUE AND VARIANCE

= All probability distributions are characterized by an
expected value and a variance (standard deviation

squared).

= |f we understand the underlying probability function of a
certain phenomenon, then we can make informed decisions
based on how we expect x to behave on-average over the
long-run...(so called “frequentist” theory of probability).

= Expected value is just the weighted average or mean (u) of
random variable x. Imagine placing the masses p(x) at the
points X on a beam; the balance point of the beam is the

expected value of x.

= Recall the following probability distribution of ship arrivals:

x 10 11

12

13 14

P(x) 4 2

2

A A

AN

i=1

ixip(x) =10(.4) +11(2) +12(2) +13(.1) + 14(.1) =11.3

Bell-curve (normal) distribution

y

J

Mean (p)

One standard deviation
from the mean (o)

39
]
EXPECTED VALUE, FORMALLY
General Formula:
Discrete case: owome  |n  x % %, X,
Poddbilty | B P P Py P E(X) =
— Expectel Volw = Do) + B %y + BTy + PyXg + -+ Poe Can be used interchangeably.
E(X)= § ,xip(xi)
all x Exomple: A single fide six-sided &it is rolled, Expected value is an extremely
Cusome | 1 2 3 4 5 6 useful concept for good
Frobability | ¥é Y6 Y6 LUs 1Ue V6 decision-making!
. ExpeetedVﬂ\m=1-—l+2-l+3-l+4‘l+5‘l+6-1=3‘5
Continuous case: 6 6 6 6 6 6
E(X) = J.x. . )dx The symbol dx, called the differential of the variable x,
( ) ’p( ’)d indicates that the variable of integration is x.
all x
Continuous case (uniform distribution) px)
1 2 1
X 1 1
EQX)= [x(dv="- | =2 -0=2
0
0 A x
40
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EXAMPLE: THE LOTTERY

= The Lottery (also known as a tax on people who are bad at math...)

= A certain lottery works by picking 6 numbers from 1 to 49. It costs $1.00 to play the lottery, and if
you win, you win $2 million after taxes.

= [f you play the lottery once, what are your expected winnings or losses?

Calculate the probability of winning in 1 try:
1 1 72 %10 “49 choose 6” If you play the lottery every week for

©) 491 713,983 816 10 years, what are your expected
Out of 49 numbers, - 5
¢ o this is the number of winnings or losses?

distinct combinations

of 6. 520 x (-.86) = -$447.20
The probability function (note, sums to 1.0): Expected Value
x$ o) E(X) = P(win)*$2,000,000 + P(lose)*-$1.00
=2.0x106* 7.2 x 105+ 999999928 (-1) = .144 - .999999928 = -$.86
- .999999928
+2million| 7.2x10-8 Negative expected value is never good!

You shouldn’t play if you expect to lose money!

41

GAMBLING (OR HOW CASINOS CAN AFFORD TO GIVE SO MANY FREE
DRINKS...)

A roulette wheel has the numbers 1 through 36, as well as 0 and 00. If you bet $1 that
an odd number comes up, you win or lose $1 according to whether or not that event
occurs. If random variable X denotes your net gain, X=1 with probability 18/38 and X= -1
with probability 20/38.

E(X) = 1(18/38) - 1 (20/38) = -$.053
On average, the casino wins (and the player loses) 5 cents per game.
The casino rakes in even more if the stakes are higher:

E(X) = 10(18/38) - 10 (20/38) = -$.53

If the cost is $10 per game, the casino wins an average of 53 cents per game. If 10,000
games are played in a night, that’s a cool $5300.

42
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EXPECTED VALUE OF A COIN TOSS

You toss a coin 100 times. What'’s the expected number of heads? What's the variance of the number of heads?
Intuitively, we’d probably all agree that we expect around 50 heads, right?
Another way to show this>

Think of tossing 1 coin. E(X=number of heads) = (1) P(heads) + (O)P(tails)
- E(X=number of heads) = 1(.5)+0 =.5

If we do this 100 times, we’re looking for the sum of 100 tosses, where we assign 1 for a heads and O for a tails.
E(X +X5 #X5 X, X5 et X00) = E(X,) + E(X,) + E(Xg)+ E(X,)+ E(Xg) vt E(X o) =
100 E(X,) = 50

43
|
VARIANCE IN 100 COIN TOSS
What's the variability, though? More tricky. But, again, we could do this for 1 coin and then use our rules of variance.
Think of tossing 1 coin.
. Var(X) = E[(X - E[X])’]
E(X2=number of heads squared) = 12 P(heads) + 02 P(tails)
=E[X? - 2XE[X] + E[X]*]
~E(X?)=1(5)+0 =.5 = E[X*] - 2E[X] E[X] + B[X]?
Var(X)=.5-.52 = 5-.25 =.25 = E[Xz} — E[X]?
Then, using our rule: Var(X+Y)= Var(X) + Var(Y) (coin tosses are independent!)
Var(X, +X, +X5 +X, +Xg ... +X o0) = Var(X,) + Var(X,) + Var(X;)+ Var(X,)+ Var(Xg) .....+ Var(X ) =
100 Var(X,) = 100 (.25) =25
SD(X)=5
The variance of X is equal to the mean of Interpretation: When we toss a coin 100
the square of X minus the square of the times, we expect to get 50 heads plus or
mean of X. minus 5.
44
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OR USE COMPUTER SIMULATION...

2500
= Flip coins virtually! Mean = 50
Std.dev=5

Follows a normal distribution

= Flip a virtual coin 100 times; count
the number of heads.

2000

= Repeat this over and over again a

.. 95% of the time, we get
large number of times (we’ll try

between 40 and 60 heads...

1500

30,000 repeats!)

Count

= Plot the 30,000 results.

1000

500

0 32 34 36 3@ 40 42 44 46 48 50 52 54 6 58 G0 62 B4 G 68 70
Number of heads in 100 coin tosses

45
]
COVARIANCE: JOINT PROBABILITY
= The covariance measures the strength of the linear relationship between two
variables
= The covariance: E[(x — M, )(y — U, )]
N = Covariance between two random variables:
o ::ZS X, — = P(x,y,
e P ( i T Hx )(y’ /Jy) ( i y’) cov(X,Y) >0 — Xand Y are positively correlated
cov(X,Y) <0 — XandY are inversely correlated
= The sample covariance: )
cov(X,Y) =0 — XandY are independent
n
Z(xi _X)(yi _Y)
cov(x,y)=-"
n—1
46
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BAYES’ THEOREM

= Conditional probability: Conditional probability is denoted by P(B=b|A=a). It is the probability of B=b, provided that
A=a has occurred.

= Multiplication rule: It is denoted by P(A,B)=P(B|A)P(A). It says that the probability that Events A and B both occur is
equal to the probability that Event A occurs times the probability that Event B occurs, given that A has occurred.
= Bayes’ theorem is given by:
P(B| A)P(A
P4 | By = PBLAPA)
P(B)
= where A and B are two events and P(B) # 0
= P(A | B)is the conditional probability of event A occurring given that B is true.
= P(B|A)is the conditional probability of event B occurring given that A is true.

= P(A) and P(B) are the probabilities of A and B occurring independently of one another.

= Examples: https://betterexplained.com/articles/an-intuitive-and-short-explanation-of-bayes-theorem

47
|
APPLICATIONS OF PROBABILITY
Assume that a doctor administers an AIDS test to a patient. This test is fairly accurate and it fails
only with 1% probability if the patient is healthy but reporting him as diseased. Moreover, it never
fails to detect HIV if the patient actually has it. We use D) to indicate the diagnosis (1 if positive
and O if negative) and H to denote the HIV status (1 if positive and 0 if negative).
:Conditional probability of P(D, | H).
Conditional probability iIl fIO
P(D, =1 | H) 1 0.01
P(D;=0| H) 0 099
= What is the probability the patient has AIDS if the test comes back positive, i.e., P(H=1|D,=1)?
= Assume that the population is quite healthy, e.g., P(H=1)=0.0015.
48
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ANSWER

To apply Bayes' theorem, we need to determine

P(D; =1)
=P(D,=1,H=0)+P(D, =1,H=1)
=P(D,=1|H=0)PH=0)+PD, =1|H=1D)PH = 1)
=0.011485.

Thus, we get
PH=1|D =1)

_P(D;=1|H=1DPH=1)
B P(D, = 1) ’

=0.1306

In other words, there is only a 13.06% chance that the patient actually has AIDS, despite using a
very accurate test. As we can see, probability can be counterintuitive.

49

IMPORTANT
DISCRETE
DISTRIBUTIONS

Binomial

Yes/no outcomes (dead/alive,
treated/untreated,
smoker/non-smoker,
sick/well, etc.)

Poisson

Counts (e.g., how many cases
of disease in a given area)

50
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BINOMIAL PROBABILITY DISTRIBUTION

= A fixed number of observations (trials), n
= e.g. 15 tosses of a coin; 20 patients; 1000 people surveyed

= A binary random variable
= e.g. head or tail in each toss of a coin; defective or not defective light bulb
= Generally called “success” and “failure”
= Probability of success is p, probability of failure is 1 — p

= Constant probability for each observation
= e.g., Probability of getting a tail is the same each time we toss the coin

51
5 |

Take the example of 5 coin tosses. What's the probability that you flip exactly 3 heads in 5 coin tosses?

Solution:

One way to get exactly 3 heads: HHHTT

What's the probability of this exact arrangement?

P(heads)xP(heads) xP(heads)xP(tails)xP(tails) =(1/2)* x (1/2)*

Another way to get exactly 3 heads: THHHT

Probability of this exact outcome = (1/2)! x (1/2)* x (1/2)' = (1/2)3 x (1/2)?

In fact, (1/2)% x (1/2)? is the probability of each unique outcome that has exactly 3 heads and 2 tails.

So, the overall probability of 3 heads and 2 tails is:

(1/2) x (1/2)* +(1/2)* x (1/2)*+ (1/2)* x (1/2)* + ..... for as many unique arrangements as there are—but how many are there??
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Outcome Probability
— THHHT (172 x (1722 ™
HHHTT (1/2)3 x (1/2)?
TTHHH (1/2)3 x (1/2)?
HTTHH (1/2)* x (1/2)* The probability
5\ ways to HHTTH (172 x (172) of each unique
arrange 3 THTHH 172y x (172)2 > outcome (note:
heads in HTHTH (172)%x (1/2) they are all
3) 5 trials HHTHT (1/2)° x (1/2)? equyab
THHTH (1/2)3 x (1/2)?
HTHHT (1/2)3 x (1/2)2

10 arrangements x (1/2)3 x (122 _/

C,=513121 =10

-~ P(3 heads and 2 tails) =  x P(heads)’ x P(tails)’ =

10x (%)>=31.25%

53
]
BINOMIAL DISTRIBUTION FUNCTION:
X=THE NUMBER OF HEADS TOSSED IN 5 COIN TOSSES
p(x) Note the general pattern emerging = if you have only
two possible outcomes (call them 1/0 or yes/no or
success/failure) in n independent trials, then the
probability of exactly X “successes”=
n = number of trials
01 2 3 4 5 x
Ld
number of heads "y 1 X
p(-p) |
X
1-p = probability of failure
X = # successes out of n p = probability of success
trials
54
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DEFINITIONS: BINOMIAL

= Binomial: Suppose that n independent experiments, or trials, are performed, where n is a fixed number, and that
each experiment results in a “success” with probability p and a “failure” with probability 7-p. The total number of
successes, X, is a binomial random variable with parameters n and p.

= We write: X ~ Bin (n, p) {reads: “X is distributed binomially with parameters n and p}

= And the probability that X=r (i.e., that there are exactly r successes) is:

n

P(X=r)= ( jp’(l -p)"’

”

DEFINITIONS: BERNOULLI

= Bernouiilli trial: If there is only 1 trial with probability of success p and probability of failure 1-p, this is called a
Bernouilli distribution. (special case of the binomial with n=1)

1 1
Probability of success | P(X =1) =( )pl(l_p)l‘l =p Probability of failure |P(X =0) :[ jpo(l—p)l‘0 =1-p
1 0

55

BINOMIAL DISTRIBUTION: EXAMPLE

= |f | toss a coin 20 times, what’s the probability of getting exactly 10 heads?

20
(.55 =.176
10

= |f | toss a coin 20 times, what's the probability of getting of getting 2 or fewer heads?

B (.5)°(.5)% = 20t (.5)* =9.5x10 7 +
o) 2010! '
20 1 19 20! 20 -7 -5
(.5)'(.5)"” = ==(.5)® =20x9.5x10 7 =1.9x10 > +
| 191
20 2 18 20! 20 -7 -4
(.5)%(.5)"® = =—(.5)* =190 x9.5x10 7 =1.8x10
) 18121
=1.8x107*
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MULTINOMIAL DISTRIBUTION

The multinomial is a generalization of the binomial. It is used when there are more than 2 possible outcomes (for ordinal
or nominal, rather than binary, random variables).

Instead of partitioning n trials into 2 outcomes (yes with probability p / no with probability 1-p), you are partitioning n trials into 3 or more
outcomes (with probabilities: p; p, ps..)

= General formula for 3 outcomes:

n! . B
P(D=xR=y,G=2)=———pppp(1=pp = Pg)
x!ylz!

Specific Example: if you are randomly choosing 8 people from an audience that contains 50% democrats, 30% republicans,
and 20% green party, what's the probability of choosing exactly 4 democrats, 3 republicans, and 1 green party member?

P(D=4,R=3,G=1)= %(.5)“(.3)3(.2)1

POISSON DISTRIBUTION

= Poisson distribution is for counts—if events happen at a constant rate over time, the Poisson
distribution gives the probability of X number of events occurring in time T.

POISSON MEAN AND VARIANCE

For a Poisson random variable, the
= Mean ﬂ = l variance and mean are the same!

= Variance and Standard Deviation

o=

o=+4

where A = expected number of hits in a given time period

29



POISSON DISTRIBUTION EXAMPLE

The Poisson distribution models counts, such as the number of new cases of SARS that occur in women in New England next month.
The distribution tells you the probability of all possible numbers of new cases, from 0 to infinity.

If X= # of new cases next month and X ~ Poisson (1), then the probability that X=k (a particular count) is:

X P(X)
k -4
Ae .
p(X=k)y=—— 0 2% =135
k! 0
1 2'e =27
1!
2 2%e? =27
For example, if new cases of West Nile 2!
Virus in New England are occurring at a 3 )1, -2 18
rate of about 2 per month, then these are Y
the probabilities that: 0,1, 2, 3, 4, 5, 6, to - -
1000 to 1 million to... cases will occur in 4 =09
New England in the next month:
5

59

MORE ON POISSON...

“Poisson Process” (rates)

Note that the Poisson parameter A can be
given as the mean number of events that
occur in a defined time period OR,
equivalently, A can be given as a rate, such
as A=2/month (2 events per 1 month) that
must be multiplied by t=time (called a
“Poisson Process”) >

X ~ Poisson (L)

1a. If calls to your cell phone are a Poisson process with a constant rate A=2
calls per hour, what’s the probability that, if you forget to turn your phone off in
a 1.5 hour movie, your phone rings during that time?

X ~ Poisson (A=2 calls/hour)
P(X=1)=1 - P(X=0)

(2*1.5)%e7" (3)%e”
0! 0!

P(X =0)= =3 =.05

A e M ~P(X21)=1 - .05 = 95% chance
P(x =k =2
k!
1b. How many phone calls do you expect to get during the movie?
E(X) = At
Var(X) = At E(X) = At = 2(1.5) = 3
60
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GOAL

= Data storage, manipulation and preprocessing are
fundamental to machine learning.

= This lecture provides a rapid introduction to basic and
frequently-used mathematics used in machine
learning

= Matrix operations and their implementations
= Bit of calculus and probability

= For further understanding of all of the mathematical
content, review Chapter 18 (Appendix - Mathematics
for Deep Learning) from the book “Dive into Deep
Learning ”

61

A

Dive into

Aston Zhang, Zachary C. Liptc
Mu Li, and Alexander J. Smold,

IPYTHON

= |nteractive Python started in 2001 as an enhanced Python interpreter

= Developed by Fernando Perez as “Tools for the entire life cycle of research computing”

= |f Python is Engine, IPython as the interactive control panel.
= Closely tied with the Jupyter project which provides browser based notebook

= Two modes
= |Python shell (Anaconda prompt -> Ipython)

= Jupyter notebook (Anaconda prompt -> jupyter ntoebook)

62
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IPYTHON FEATURES

= Refer to online notebooks:

m https://github.com/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/01.00-
IPython-Beyond-Normal-Python.ipynb

63

DATA AS NUMBERS

= Datasets can come from a wide range of sources and formats
= E.g. documents, images, sound clips, numerical measurements
= Data is fundamentally array of numbers
= Digital images are 2D arrays of numbers representing pixel brightness across the area
= Sound clips are 1D arrays of intensity versus time
= Text can be converted in various ways into numerical representations
= First step in making data analyzable is to transform it into arrays of numbers

= Both, NumPy and Pandas package efficiently store and manipulate numerical arrays

64
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NUMPY

= Stands for Numerical Python
= Efficient interface to store and operate on dense data buffers

= NumPy arrays are similar to Python’s built-in list type, but provide much more efficient storage and data
operations for larger arrays

= Form the core of data science tools in Python

axis=1

col0 |col1|col2 |col3 |cold
row( axis=1
axis=0 il
row2
axis=0
65
5§ |
NUMPY FEATURES
= Refer to online notebooks:
m https://github.com/jakevdp/PythonDataScienceHandbook/blob/8a34a4f653bdbdc01415a94
dc20d4e9b97438965/notebooks/02.00-Introduction-to-NumPy.ipynb
66
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TENSORFLOW

Deep learning framework released by Google in November 2015

Deep learning does a wonderful job in pattern recognition, especially in the
context of images, sound, speech, language, and time-series data.

Installation: https://www.tensorflow.org/install/

Examples and tutorials: https://github.com/tensorflow/examples

67

WHAT IS A TENSOR

= Atensoris a mathematical object and a generalization of scalars, vectors and matrices.
= Atensor can be represented as a multidimensional array.

= A tensor with zero rank (order) is a scalar.

= Atensor with rank 1 is a vector/array.

= Matrix is a tensor of rank 2.

= 5:This is a rank O tensor; this is a scalar with shape [ ].

[2.,5., 3.]: This is a rank 1 tensor; this is a vector with shape [3].

[[1., 2., 7], [3., 5., 4.]]: This is a rank 2 tensor; it is a matrix with shape [2, 3].
[[[1., 2., 3.1, [[7., 8., 9.11]: This is a rank 3 tensor with shape [2, 1, 3].

68
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CONVERT IMAGE TO A TENSOR

<¢—— Blue Color
11 | a1 | 37 a <—— Green Color
g 10 a0 | 20 <—— Red Color
20 14 50 21
30 38 21 | 41
10 21 25 20

69
e § |
= Scalar is the value consisting of just one numerical quantity
= Ascalaris represented by a tensor with just one element.
= |n the next snippet, we instantiate two scalars and perform some familiar arithmetic operations with them, namely
addition, multiplication, division, and exponentiation
import tensorflow as tf
x = tf.constant([3.8])
y = tf.constant([2.8])
X+y, x*y, x/y, x¥y
(<tf.Tensor: shape=(1,), dtype=float32, numpy=array([5.], dtype=float32)>,
<tf.Tensor: shape=(1,), dtype=float32, numpy=array([6.], dtype=float32)>,
<tf.Tensor: shape=(1,), dtype=float32, numpy=array([1.5], dtype=float32)>,
<tf.Tensor: shape=(1,), dtype=float32, numpy=array([9.], dtype=float32)>)
70
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VECTORS

A list of scalar values. We call these values the elements (entries or components) of the vector

In ML vectors represent examples from the dataset and their values hold some real-world significance

E.g., if we were training a model to predict the risk that a loan defaults, we might associate each applicant

with a vector whose components correspond to their income, length of employment, number of previous
defaults, and other factors.

x = tf.range(4)
X
<tf.Tensor: shape=(4,), dtype=int32, numpy=array([e, 1, 2, 3], dtype=int32)>

= In math, a vector x can be written as:

71
I
LENGTH, DIMENSIONALITY AND SHAPE
= The length of a tensor is given by Python's built-in len() function
len(x)

4

= The shape is a tuple that lists the length (dimensionality) along each axis of the tensor. For tensors with just one
axis, the shape has just one element
X.shape
TensorShape([4])
72
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MATRICES

= Matrices generalize vectors from order one to order two
a a
= Forany AERmxn, the shape of A is(m, n)or mxn. Specifically, when a H ¥

matrix has the same number of rows and columns, its shape becomes a i = ay 93
square; thus, it is called a square matrix. : :

= We can create an mxn matrix by specifying a shape with two components m Aml dm
and n when calling any of our favorite functions for instantiating a tensor.

A = tf.reshape(tf.range(20), (5, 4))
A

<tf.Tensor: shape=(5, 4), dtype=int32, numpy=
array([[ @, 1, 2, 3],

[ 4, 5 &6, 7],

[ 8, 9, 1o, 11],

[12, 13, 14, 15],

[16, 17, 18, 19]], dtype=int32)>

Al

oy

amn

73
. § |
MATRIX TRANSPOSE
= When we exchange a matrix's rows and columns, the result is called the transpose of ay @ Ay
the matrix
T ajp  dp ()
= We signify a matrix A's transpose by AT and if B=AT, then b;=a; forany i and j A =
= A symmetric matrix A is equal to its transpose AT
y q P QA Qy Qmn

tf.transpose(A)

<tf.Tensor: shape=(4, 5), dtype=int32, numpy=
array([[ e, 4, 8, 12, 18],

[ 2; 5; 9313, 17];

[ 2, 6, 1o, 14, 18],

[ 3, 7, 11, 15, 19]], dtype=int32)>

B = tf.constant([[1, 2, 31, [2, @; 4]; [3, 4, 5]11)
B == tf.transpose(B)
<tf.Tensor: shape=(3, 3), dtype=bool, numpy=
array([[ True, True, Truel,

[ True, True, True],

[ True, True, Truel])>»
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BASIC PROPERTIES OF TENSOR ARITHMETIC

= Given any two tensors with the same shape, the result of any binary elementwise operation will be a tensor of
that same shape.

A = tf.reshape(tf.range(20, dtype=tf.float32), (5, 4))
B =A # No cloning of "A" to B by allocating new memory
A, A+B

(<tf.Tensor: shape=(5, 4), dtype=float32, numpy=

arravCll Bey Loy 2as 3505
[ 4., 5., B Tols
[ 8., 9., 18., 11.],
[0, A8, 18y O8]
[16., 17., 18., 19.]], dtype=float32)>,

<tf.Tensor: shape=(5, 4), dtype=float32, numpy=

areavii [ @y iy By 6L
[ 8y T0%; Iy B8]y
[16:: 185 28 D85
[24., 26., 28., 30.],
[32., 34., 36., 38.]], dtype=float32)>)
75
;. |
= Elementwise multiplication of two matrices is called their Hadamard product (math notation ©)
ajpnhyy anbiz ... apby,
ay by apbyn ... aymb
AOB= ke
Aml bm] Am2 bmz ~=- Qpn bmn
A *B
<tf.Tensor: shape=(5, 4), dtype=float32, numpy=
array([[ ., 1 - 4., 9.1,
[ 16., 25., 36., 49.],
[ 64., 81., 1ee., 121.],
[144., 169., 196., 225.],
[256., 289., 324., 361.]], dtype=float32)>
76
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REDUCTION - SUM OF TENSOR ELEMENTS

X = tf.range(4, dtype=tf.float32)
X, tf.reduce_sum(x)

(<tf.Tensor: shape=(4,), dtype=float32, numpy=array([@., 1., 2., 3.], dtype=flo

at32)>,
<tf.Tensor: shape=(), dtype=float32, numpy=6.8>)

We can express sums over the elements of tensors of arbitrary shape. For example, the sum of
the elements of an m X n matrix A could be written }i7; 3 a;;.

A.shape, tf.reduce_sum(A)

(TensorShape([5, 4]), <tf.Tensor: shape=(), dtype=float32, numpy=1906.8>)

77

REDUCTION - ROWWISE (AXIS=0), COLUMNWISE (AXIS=1)

A_sum_axise = tf.reduce_sum(A, axis=@)
A_sum_axis®, A_sum_axis@.shape

(<tf.Tensor: shape=(4,), dtype=float32, numpy=array([4@., 45., 50., 55.], dtype
=float32)>,
TensorShape([4]))

A_sum_axisl = tf.reduce_sum(A, axis=1)
A_sum_axisl, A sum_axisl.shape

(<tf.Tensor: shape=(5,), dtype=float32, numpy=array([ 6., 22., 38., 54., 70.],
dtype=float32)>,
TensorShape([5]))

Reducing a matrix along both rows and columns via summation is equivalent to summing up all
the elements of the matrix.
tf.reduce_sum(A, axis=[@, 1]) # Same as "tf.reduce_sum(A)’

<tf.Tensor: shape=(), dtype=float32, numpy=190.8>

78
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MEAN AKA AVERAGE

tf.reduce_mean(A), tf.reduce_sum(A) / tf.size(A).numpy()
(<tf.Tensor: shape=(), dtype=float32, numpy=9.5>,
<tf.Tensor: shape=(), dtype=float32, numpy=9.5>)

Likewise, the function for calculating the mean can also reduce a tensor along the specified axes.

tf.reduce_mean(A, axis=0), tf.reduce_sum(A, axis=0) / A.shape[@]

(<tf.Tensor: shape=(4,), dtype=float32, numpy=array([ 8., 9., 10., 11.], dtype
=float32)>,

<tf.Tensor: shape=(4,), dtype=float32, numpy=array([ 8., 9., 16., 11.], dtype
=float32)>)

79
|
NON-REDUCTION SUM, CUMULATIVE SUM
= Keep the number of axes unchanged when invoking the function for calculating the sum or mean
sum_A = tf.reduce_sum(A, axis=1, keepdims=True)
sum_A
<tf.Tensor: shape=(5, 1), dtype=float32, numpy=
array([[ 6.1,
[22.],
[38.],
[54.1],
[70.]], dtype=float32)>
= Calculate cumulative sum of elements of A along some axis (e.g. axis=0 by row)
tf.cumsum(A, axis=8)
<tf.Tensor: shape=(5, 4), dtype=float32, numpy=
array([[ ., 1., 2., 3.1,
[ 4., 6., 8., 18.],
[12; B5., TB.g P1.]
[24:, 28.; 32.; 36:];
[40., 45., 50., 55.]], dtype=float32)>
80
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DOT PRODUCT

Given two vectors X,y € RY, their dot product xTy (or {x,y))is a sum over the products of the
elements at the same position: xTy = Ef’:] X Vi

y = tf.ones(4, dtype=tf.float32)
X, y, tf.tensordot(x, y, axes=1)

(<tf.Tensor: shape=(4,), dtype=float32, numpy=array([e., 1., 2., 3.], dtype=flo
at32)>,

<tf.Tensor: shape=(4,), dtype=float32, numpy=array([1., 1., 1., 1.], dtype=flo
at32)>,

<tf.Tensor: shape=(), dtype=float32, numpy=6.0>)

Note that we can express the dot product of two vectors equivalently by performing an
elementwise multiplication and then a sum:

tf.reduce_sum(x * y)

<tf.Tensor: shape=(), dtype=float32, numpy=6.8>

81
|
= Let A be matrix represented using its row vectors
= The matrix-vector product Ax is simply a column vector of length m, whose i" element is the dot product a,™x
aI a? aIx
T T T
a a X
A=|"? Ax=| "% |x= 2
ay, a,, X
A.shape, x.shape, tf.linalg.matvec(A, x)
(TensorShape([5, 4]),
TensorShape([4]),
<tf.Tensor: shape=(5,), dtype=float32, numpy=array([ 14., 38., 62., 86., 118.], dtype=float32)>)
B = tf.ones((4, 3), tf.float32)
MATRIX-MATRIX oo ®
: <tf.Tensor: shape=(5, 3), dtype=float32, numpy=
MULTIPLICATION SENRHL, B B _E-
235 235 22.1;
[38., 38., 38.],
[54., 54., 54.],
[70., 7e., 70.]], dtype=float32)>
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NORMS
= Informally, the norm of a vector tells us how big a vector is in the magnitude
= The norm must be non-negative

Euclidean distance is a norm: specifically it is the L, norm. Suppose that the elements in the n-
dimensional vector x are xy, ..., X,,. The L, norm of X is the square root of the sum of the
squares of the vector elements:

lIx]l2 =

where the subscript 2 is often omitted in L, norms, i.e., ||x]| is equivalent to ||x||». In code, we
can calculate the L., norm of a vector as follows.

u = tf.constant([3.08, -4.8])
tf.norm(u)

<tf.Tensor: shape=(), dtype=float32, numpy=5.@>

83

L1 NORM

The Ly norm is expressed as the sum of the absolute values of the vector elements:

n
Xl = Y 1l
=1

As compared with the L, norm, itis less influenced by outliers. To calculate the L, norm, we
compose the absolute value function with a sum over the elements.

tf.reduce_sum(tf.abs(u))

<tf.Tensor: shape=(), dtype=float32, numpy=7.@>

Both the L, norm and the L norm are special cases of the more general L, norm:

n
Ixll, = (Y 1xal”
i=1

1/p
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CALCULUS - METHOD OF EXHAUSTION

The method of exhaustion is a method of finding the area of a shape by inscribing inside it a sequence of polygons
whose areas converge to the area of the containing shape

If the sequence is correctly constructed, the difference in area between the n” polygon and the containing shape
will become arbitrarily small as n becomes large

As this difference becomes arbitrarily small, the possible values for the area of the shape are systematically
"exhausted" by the lower bound areas successively established by the sequence members

Euclid used this method to prove certain propositions
= The area of circles is proportional to the square of their diameters

= The volumes of two tetrahedra of the same height are proportional to the areas of their triangular bases

Integral calculus originated from the method of exhaustion

000

85

OPTIMIZATION AND GENERALIZATION IN MACHINE LEARNING MODELS

In machine learning, we train models, updating them successively so that they get better and
better as they see more and more data

Getting better means minimizing a loss function, a score that answers the question "how bad is
our model?"

We really care about is producing a model that performs well on data that we have never seen
before

But we can only fit the model to data that we can actually see
The task of fitting models can be decomposed into two key concerns:

= ) Optimization: the process of fitting our models to observed data;

= ii) Generalization: the mathematical principles and practitioners' wisdom that guide as to how to produce
models whose validity extends beyond the exact set of data examples used to train them

86
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DERIVATIVE AND DIFFERENTIATION

= |n machine learning, loss functions are differentiable with respect to model parameters

= For each parameter, determine how rapidly the loss would increase or decrease if we make a small change to the

parameter

= For a function f with input and output as scalars, the derivative of f is defined as:

SO+ h) = f(x)

o= i

h
y a x" exp(x) log(x) sin(x) Derivative is the Slope
of the tangent line
dy 1
— 0 n—1  exp(x =,
% nx p(x) B cos(x)
a is not a function of x
y u+v uv y =f), u=gk)
dy du dv du dv dy du
oy —+— —v+—u ——
dx dx dx dx dx du dx
87
e
EXAMPLE: f(x) = 3x% — 4x
%matplotlib inline
from d21 import tensorflow as d21
from IPython import display
import numpy as np
def f(x):
return 3 * x *¥* 2 - 4 * x
def numerical_lim(f, x, h):
return (f(x + h) - f(x)) / h
h=290.1
for i in range(5):
print(f'h={h:.5f}, numerical limit={numerical_lim(f, 1, h):.5f}")
h *= 9.1
h=0.10000, numerical limit=2.30000
h=0.01000, numerical limit=2.03000
h=0.00100, numerical limit=2.00300
h=0.00010, numerical limit=2.00030
h=0.00001, numerical limit=2.00003
88
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DIFFERENTIATION RULES

Suppose that functions f and g are both differentiable and C is a constant, we have:

the constant multiple rule
d d
—I[C = C— .
. [Cr(x)] i F(x)
the sum rule
d d d
—— + = — o = s
e Lf(x) + g(x)] = J(x) o g(x)
the product rule

d d d
E[f(X)g(X)] = f(x)E[g(X)] + g(X)E[f(X)],

and the quotient rule

d [ F0] _ BOL] = Fx)L[g)]
dx [ g0 | [g(x)]?

89
L~ |
PARTIAL DERIVATIVE
In machine learning, functions often depend on many variables. Thus, we need to extend
the ideas of differentiation to these multivariate functions.
Lety = f(xy, X7, ..., X,) be afunction with n variables. The partial derivative of y with
respect to its e parameter x; is
2 il FO v o X 1uX0F B, B 1000 2 Xn)— J 1o 2. X5 500 X)
ox;  h-0 h )
To calculate %, we can simply treat x;, ..., x;_y, X;31. ... . X, @s constants and
calculate the derivative of y with respect to x;. For notation of partial derivatives, the
following are equivalent:
dy _ odf
= = e == ey = fr= = B
ox; 0x;
a d
Let f(z,y) = y3z?. Calculate —f(m, y). —f(:rz, y) = 2y3z.
ox oz
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GRADIENTS

= Agradient is a vector whose components are the partial derivatives of a multivariate function with respect to
all its variables

= Example: Say that we have a function, f(x,y) = 3x?y. Our partial derivatives are:

of(x,y) i 2, — of (z.y) 0, 0 2
9w osot V= oy T Y=
= If we organize these partials into a horizontal vector, we get the gradient of f(x,y), or V f(x,y):

of (x,y) 0f(x,y)
ox Oy

[ ?]

| = [6yz, 3z

= Gradient vector points to the direction of greatest increase of a function

= Gradient is zero at local maximum or local minimum (as there is no single direction of increase)

Explanatory video: https://www.youtube.com/watch?v=GkBAvWI160HI
Further info: https://betterexplained.com/articles/vector-calculus-understanding-the-gradient,

91
;. |
CHAIN RULE
= The chain rule enables us to differentiate composite functions
= Suppose that functions y=f(u) and u=g(x) are both differentiable, then the chain rule states that:
dy dy du
dx du dx’
Suppose that the differentiable function y has variables u, u, ... . u,,, where each differentiable
function u; has variables x|, x5, ..., x,. Note that y is a function of x{, x5, ..., x,,. Then the
chain rule gives
dy dy du dy du, - dy du,
dx; duy dx; duy dx; du,, dx;
foranyi=1,2,...,n.
92
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CHAIN RULE EXAMPLE

Let f(z) = 6z + 3 and g(z) = —2z + 5. Use the chain rule to calculate »'(z), where h(z) = f(g(z)).

Solution: The derivatives of f and g are
fi@)=6
§(z) = 2.
According to the chain rule,
W (z) = f'(g(x))g' (=)

F'(~22+5)(-2)
=6(-2)=—12.

Let f(z) = €* and g(z) = 4. Use the chain rule to calculate h'(z), where h(z) = f(g(z)).

Solution: The derivative of the exponential function with base e is just the function itself, so f'(z) = ¢®. The
derivative of g is ¢'(z) = 4. According to the chain rule,

K (z) = f'(g(=))g'(x)
= f'(4z) - 4

= 4e¥®

= For more examples see: https://mathinsight.org/chain rule simple examples
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