
Weka Exercises 

Today we learned the basics of running Weka and used it to build a decision tree for a very small 
data set. In this exercise you will build a decision tree for a more realistic data set. You will also 
apply Naïve Bayes and k nearest neighbour methods to the same data set. In the course of doing 
this you will find out how to discover what each of the learning procedures provided by Weka 
actually does and how their parameters may be modified.  

The Soybean Diagnosis Data Set 

The data set for this exercise is another of those supplied when you downloaded the Weka system. 
It should be found in Weka-3-9/data/soybean.arff.  

Before running Weka, it is worth having a brief look at the data file using a text editor. Lines 
beginning with % are comments and you will see that a great deal of background information is 
supplied in this form. This includes details of the data itself and references to previous work using 
the data. There are 683 examples, each of which has 35 attributes plus the class attribute. The task 
is to assign examples to one of 19 disease classes. 

Building a Decision Tree 

Open Weka Explorer and in the “preprocess” window then use the browser to select the soybean 
data set. The Explorer window should now look like this: 

 

 

 



Next, as in Exercise 1, click the ’Classify’ tab and select J48 as the classifier. However, this time 
leave the default of 10 way cross validation unchanged as the experimental procedure. As it is the 
final attribute, ‘class’ will have been selected as the classification attribute by default. 

Now click the start button to run J48 on the data set. As usual, the results appear in the scrollable 
panel on the right. However, it is useful to have them in a separate window, particularly if you want 
to compare two or more sets of results. To put them in a separate window, right click on the 
appropriate item in the window on panel on the lower left headed ‘Result list (right-click for 
options)’ and then select ‘View in separate window’. A copy of the results will appear in a separate 
window which can be enlarged to fill the screen. 

Another option provided on this pop up menu is ‘Visualise tree’. You can try this with the current 
set of results but you will see that the visual output is just a mess because the tree has so many 
nodes. 

Fortunately the tree is more intelligible in the separate results window you have just created. Here it 
is presented in indented text format just after the heading ‘J48 pruned tree’. At the end of the tree is 
the information that it contains 93 nodes of which 61 are leaves. The rest of the output provides 
information about how well the program performed. For now, all we need to note is that it 
classified 91.51% of examples correctly. 

Do not close the separate window displaying the results of this run. 

Building an unpruned tree 

J48 built a pruned decision tree in the run you have just done because that is the default option. 
However, it is easy to get it to produce an unpruned tree. 

Left click on ‘J48’ in the ‘Classify’ window and a window will appear that looks like this: 

 

 

Change ‘unpruned’ in this window to ‘True’, click OK, and then run the program again.  



The output for this new run replaces the output from your earlier run in the scrollable panel of the 
Explorer window. However, your earlier results are still there in the separate window you created. 
You can make another separate window for these new results. 

In this particular case, you will see that the resulting unpruned tree classified 91.36% of examples 
correctly. This is very slightly worse than the pruned tree although I doubt that the difference is 
statistically significant. However, the unpruned tree is nearly twice as big with 175 nodes of which 
121 are leaves. 

What do the various learning procedures available in Weka actually do? 

So far you have been told that J48 implements a decision tree building procedure. How could you 
have found this out for yourself and how could you find out what all the procedures available 
actually do? 

The GenericObjectEditor window that you called up by left clicking on ‘J48’ (see above) contains 
two buttons. Clicking on these will provide more information about the procedure that J48 
implements and its parameters. 

Clicking on the ‘More’ button provides this scrollable window: 

 
 

This tells you that J48 is an implementation of Quinlan’s C4.5, provides a reference, and then 
explains the various parameters that the user can set. 

The information you are given about the procedures available in Weka varies widely (it depends 
upon whoever implemented them) but this is typical. 



The ‘Capabilities’ button produces this window: 

 

 

 

Essentially this is information about the limitations of the procedure. In this case there are very few. 
The class can be either binary or nominal and the procedure will even cope with missing class 
values. A wide range of attribute types can be handled and missing values are acceptable. 
Somewhat oddly, the program will apparently operate with as few as zero examples! 

Running Naïve Bayes on the Soybean data set. 

For the next part of this exercise, we will apply a Naïve Bayes classifier to the soybean data set. 

Click on ‘Choose’ in the ‘Classify’ window of Weka Explorer then select ‘NaiveBayes’ from the 
set of classifiers available in the ‘bayes’ submenu. (There are two other Naïve Bayes programs 
available; they will produce identical results to NaiveBayes as they differ only in how they handle 
numeric attributes). 

Run this program by clicking the ‘Start’ button. The results will show that 92.97% of examples are 
correctly classified by this program. This is slightly better than either of the decision trees but 
possibly not a statistically significant improvement. 

Running k Nearest Neighbour on the Soybean data set. 

For the final part of this exercise, we will apply a k nearest neighbour classifier to the soybean data 
set. 

The standard k nearest neighbour method will be found in the ‘lazy’ submenu of the list presented 
when you click ‘Choose’ in Explorer’s Classify window. It is called ‘IBk’. Select this and then 
click on IBk  so you can modify the parameters. The default value of k is 1. Set it to 3 and then 
click Start to run the programs. 

You will see that 91.36% of examples are correctly classified; the same result as with the unpruned 
decision tree procedure. Try investigating the effect of repeating the run with different values for k. 

The Ionosphere Data Set 

The first data set for this exercise is another of those supplied when you downloaded the Weka 
system. It should be found in Weka-3.6/data/ionosphere.arff. It contains 351 examples, each of 
which has 34 numeric attributes plus the binary class attribute.  



Building a Decision Tree 

Open Weka Explorer and in the “preprocess” window then use the browser to select the ionosphere 
data set. The Explorer window should now look like this: 

 

 

Click the ’Classify’ tab and select J48 as the classifier an click the ‘Start’ button leaving the default 
of 10 way cross validation unchanged.  As usual, the results appear in the scrollable panel on the 
right. Put them in a separate window, by  right clicking on the appropriate item in the window on 
panel on the lower left headed ‘Result list (right-click for options)’. A copy of the results will 
appear in a separate window which can be enlarged to fill the screen. 

 

The first portion of the output contains the decision tree in indented text format, followed by the 
count of the number of leaves and nodes. The rest of the output provides a lot of data about the 
results. 

First there is a section that looks like this: 

 

Correctly Classified Instances         321               91.453  % 
Incorrectly Classified Instances        30                8.547  % 
Kappa statistic                          0.8096 
Mean absolute error                      0.0938 
Root mean squared error                  0.2901 
Relative absolute error                 20.36   % 
Root relative squared error             60.4599 % 
Total Number of Instances              351      

 



Much of this is self-explanatory. The first two lines provide the accuracy and error rate. Then 
comes the kappa statistic. This is followed by 4 lines that are not particularly useful in a 
classification task because they are measures used to assess performance when the task is numeric 
prediction. 

The final section of the output provides information about how they performance varies according 
to the class predicted. 

 

=== Detailed Accuracy By Class === 
 
        TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 
          0.825     0.036      0.929     0.825     0.874      0.892    bad 
          0.964     0.175      0.908     0.964     0.935      0.892    good 
Wtd Avg.  0.915     0.125      0.915     0.915     0.913      0.892 
 
=== Confusion Matrix === 
 
   a   b   <-- classified as 
 104  22 |   a = bad 
   8 217 |   b = good 

 

The confusion matrix shows that it was rather better at classifying examples of class ‘good’ than 
class ‘bad’. Only 8 errors were made in 225 examples of class b whereas 22 errors were made in 
only 126 examples of class a. (N.B. The Weka output is slightly confusing for this data set because 
one of the classes just happens to be called class ‘b’ – I have relabelled the classes ‘good’ and ‘bad’ 
to remove this confusion)  

This difference is reflected in the Precision and Recall measures for the two classes. The Recall for 
‘good’ is high (0.964) reflecting the fact that there were only 8 false negatives: ‘good’ examples 
classified as ‘bad’. The Precision for ‘good’ is lower (0.908) reflecting the fact that there were 22 
false positives: ‘bad’ examples classified as ‘good’. 



The Glass Data Set  

The ionosphere data set has only two classes so the detailed output is correspondingly simple. The 
second data set for this exercise is another of those supplied when you downloaded the Weka 
system. It should be found in Weka-3-9/data/glass.arff. It contains 214 examples, each of which has 
10 numeric attributes. These are distributed across 7 classes so a more complex set of results is 
produced.  

Change the Explorer to the ‘PreProcess’ tab and user the browser to select the glass data set. Run 
J48 to produce a pruned decision tree using the default of 10 way cross-validation.  

This is a difficult classification task and the results show an accuracy of only 66.8% and a kappa of 
0.55 are achieved. The confusion matrix looks like this: 

 

  a  b  c  d  e  f  g   <-- classified as 
 50 15  3  0  0  1  1 |  a = build wind float 
 16 47  6  0  2  3  2 |  b = build wind non-float 
  5  5  6  0  0  1  0 |  c = vehic wind float 
  0  0  0  0  0  0  0 |  d = vehic wind non-float 
  0  2  0  0 10  0  1 |  e = containers 
  1  1  0  0  0  7  0 |  f = tableware 
  3  2  0  0  0  1 23 |  g = headlamps 

 

It is now clear that the poor performance reflects the following difficulties: 

1. The system is not very good at distinguishing between two of the classes: ‘build wind 
float’ and ‘build wind non-float’. This has a major effect because between them, these two 
classes form 2/3 of the data set. 

2. Very poor classification of class ‘vehic wind float’. Only 6 of the 17 examples were 
classified correctly. 

These weaknesses are reflected in the Recall measures for the classes concerned. 

Experimenting with WEKA using Attribute Filters 
 

The WEKA toolbox offers several preprocessing algorithms to help determine a best set of 
attributes and instances for data mining. Here, we present three experiments. The first two 
experiments illustrate attribute selection. The third concentrates on instance selection. 

 
Experiment 1: Attribute Selection - A simple approach 

 
Attempting to build an efficient data model is an exercise in futility when presented with a 
wealth of irrelevant attributes. It is to our advantage to eliminate most or all irrelevant attributes 
prior to building a model. We have the option of developing our own attribute selection 
techniques or using one or more offered by the WEKA toolbox. 

 
Let’s investigate a simple attribute selection method for supervised learning. Our experiment 
uses a dataset holding information about individuals who were either accepted or rejected when 
they applied for a credit card─see the The Credit Card Screening Dataset description box. The 
dataset contains 690 instances, 307 of which represent individuals who were approved to receive 
a credit card. The remaining 383 individuals had their credit card application rejected. We want 
to decide on a best set of attributes defining the classes contained in the data. Stated another way, 
we wish to test the possibility of building an accurate supervised learner model with a subset of 
attributes taken from the data. 



 
The attributes and values have been mapped to a set of meaningless symbols to protect the 
confidentiality of the data. However, because the mapping is consistent, we should be able to 
apply data mining to analyze the dataset. 



As a first step, open the WEKA explorer and load the dataset. Your screen will appear similar to 
the one given below: 

 
 

 

 

Notice that we are in preprocess mode with none displayed in the filter command line. If we 
scroll the attribute window, we will see the last attribute designated as class. To perform our 
experiment, we first mine the data with J48 using all sixteen input attributes and class as the 
output attribute. The screen containing the resultant decision tree follows: 



 

 
 

Notice that attribute nine represents the top-level node of the decision tree. Upon scrolling 
through the tree, we observe a classification accuracy of 84.7826%. Let’s see if we can do as 
well or better with fewer attributes. Using fewer attributes has several advantages two of which 
are building a simplier model in less time. 

 
One straightforward approach to attribute selection uses a best-first strategy where at each 
iteration we build a decision tree, then record and remove the top-level attribute. For  our 
example we first remove attribute nine and proceed to build a new decision tree. The second 
iteration shows eleven as the top-level node. Continuing, the next iteration shows ten as the next 
top-level node followed by fifteen. Let’s stop the process here. 

 
Next, reload the original dataset, remove all attributes except for attributes nine, ten, eleven, 
fifteen and the class attribute. Next, we invoke J48 to build a decision tree. Our tree appears as 
below: 



 

 
 
 
 

Notice that attribute nine is the only attribute making up the tree. The decision tree accuracy is 
85.65%. This result is not significantly better than our original result using all attributes. 
However, we see that we are able to build a model as accurate as our original model using just 
one attribute. What conclusions might we reach from this result? 

 
Attribute Selection using a WEKA filter. 

 
For the second experiment we use the same dataset but this time the attribute selection process 
takes place with the help of a WEKA preprocessing filter. Once again, load the Credit Card 
Screening Dataset. Our screen appears as follows: 



 

 
 

To invoke one of WEKA’s attribute filters, we click on choose followed by filters- supervised- 

attribute-attribute selection. The resultant screen is given below: 



 

 
 

Clearly, the command line showing the parameter list for the attribute selection filter is 
complex. We can see more filter options by simply clicking on the white space area on 
the command line. Doing so, we see the following: 

 
 



 
 

For our experiment, we will use the default values shown. Close the above window and 
click on apply. The chosen attributes are given in the window below: 

 
 

 

Notice that nine of the sixteen input attributes have been removed. Also, three of the four 
attributes initially chosen in the previous experiment are included. 

 
Next, we invoke J48 to perform a data mining session. The outcome is displayed in the 
screen below: 



15 

 

 
 

Attribute nine is the top-level node. Four additional attributes make up the remainder of the 
tree. Scrolling, we see the cross-validation shows an accuracy of 84.9275. We conclude that 
mining the data with a subset of the attribute set provides a model as accurate as the model 
developed using all sixteen original attributes. 

 

 

 


