
6/3/2020

1

Deep Learning with
Applications Using
Python

https://github.com/Apress/Deep-
Learning-Apps-Using-Python

(Some of the slides taken from Prof. Dawn J.
Lawrie’s CS484 – AI class)

Biological Neurons

• The human brain is made up of billions of simple processing units –
neurons.

• Inputs are received on dendrites, and if the input levels are over a
threshold, the neuron fires, passing a signal through the axon to the
synapse which then connects to another neuron.

1

2

6/3/2020

2

Artificial Neural Network (ANN)

• ANN is a computational network – system
of nodes and interconnection between
nodes

• Inspired by biological neural networks
which are complex networks of neurons in
human brains

• Initially, the weights (representing the
interconnection) and bias are not good
enough to make the decision
(classification, etc.)

• Similar to babies, the ANN goes through
the process of learning

• The weights are tuned per iteration to
create a good classifier

• The process of tuning the weights is called
learning or training

Multi-layer Perceptrion
• ANN which has input layer,

output layer, and two or more
trainable weight layers
(consisting of Perceptrons) is
called multilayer perceptron or
MLP.

• MLP utilizes a supervised
learning technique called
backpropagation for training.

• Its multiple layers and non-linear
activation distinguish MLP from a
linear perceptron.

• It can distinguish data that is not
linearly separable.

3

4

6/3/2020

3

Single-layer Perceptron
• A simple linear binary

classifier
• Takes inputs and

associated weights and
combines them to
produce output that is
used for classification

• No hidden layers
• Logistic regression is

the single layer
perceptron

• A single-input model has vector X with weight W and bias b
• Output Y is WX + b which is a linear model

• A liner model has two input features X1 and X2 with corresponding weights and bias b
• Output Y is W1X1 + W2X2 + b

Perceptron Model for Classification

• Single layer neural network with one input (X) and one output (Y).
• The output Y is σ (Z) where Z is WX + b and σ is sigmoid activation function.

• Multiple inputs (X1 and X2) and one output (Y), also called perceptron.
• Perceptrons can only classify linearly separable functions.

5

6

6/3/2020

4

Training Perceptrons
• Learning involves choosing values for the weights
• The perceptron is trained as follows:

• First, inputs are given random weights (usually between –0.5 and
0.5).

• An item of training data is presented. If the perceptron mis-
classifies it, the weights are modified according to the following:

• where t is the target output for the training example, o is the output
generated by the perceptron and a is the learning rate, between 0 and 1
(usually small such as 0.1)

• Cycle through training examples until successfully classify all examples
• Each cycle known as an epoch

 otxaww iii

Convergence

• Perceptron training rule only converges when training examples are
linearly separable and a has a small learning constant

• Another approach uses the delta rule and gradient descent
• Same basic rule for finding update value
• Changes

• Do not incorporate the threshold in the output value (un-thresholded
perceptron)

• Wait to update weight until cycle is complete
• Converges asymptotically toward the minimum error hypothesis,

possibly requiring unbounded time, but converges regardless of
whether the training data are linearly separable

7

8

6/3/2020

5

Two-layer Neural Network
• Two-layer neural network

with a hidden layer and an
output layer

• Two input feature vectors X1
and X2 connecting to two
neurons, X1’ and X2’

• The parameters (weights)
associated from the input
layer to the hidden layer are
w1, w2, w3, w4, b1, b2.

• (2×1)(2×2)(2×1)(2×1) is the
dimension of the input and
hidden layers.X1’ and X2’ compute the linear

combination

Two-layer Neural Network
• The linear input X1’ and

X2’ passes through the
activation unit a1 and a2.

• a1 is σ (X1’) and a2 is
σ(X2’)

a’ is linear combination of (w5*a1 + w6*a2) + b3

a’ will passthrough nonlinear sigmoid function to the final output layer.
Y = σ(a’)

9

10

6/3/2020

6

Activation Functions
• The neurons become active

beyond a certain threshold,
known as activation potential.

• In neural network, activation
function attempts to put the
output into a small range.

• Most popular output functions
are sigmoid, hyperbolic tangent
(tanh), ReLU and ELU

Backpropagation

• Multilayer neural networks learn in the same way as perceptrons.
• However, there are many more weights, and it is important to assign

credit (or blame) correctly when changing weights.
• E sums the errors over all of the network output units

Dd outputsk

kdkd otwE 2)(
2

1
)(

11

12

6/3/2020

7

Backpropagation Algorithm
• Create a feed-forward network with nin inputs, nhidden hidden units, and nout

output units.
• Initialize all network weights to small random numbers
• Until termination condition is met, Do

• For each <x,t> in training examples, Do
Propagate the input forward through the network:
1. Input the instance x to the network and compute the output ou of every unit u in the

network
Propagate the errors backward through the network:
2. For each network output unit k, calculate its error term δk

3. For each hidden unit h, calculate its error term δh

4. Update each network weight wji

where
jijji xw

))(1(kkkkk otoo

outputsk

kkhhhh woo)1(

jijiji www

Learning AND
• Initial Weights:
• w_da = .2
• w_db = .1
• w_dc = -.1
• w_d0 = .1

• w_ea = -.5
• w_eb = .3
• w_ec = -.2
• w_e0 = 0

• w_fd = .4
• w_fe = -.2
• w_f0 = -.1

a b c

d e

f

Training Data:
AND(1,0,1) = 0
AND(1,1,1) = 1

Alpha = 0.1

13

14

6/3/2020

8

Hidden Layer Representation

Can this be learned?

Target Function:

Yes!
Input Hidden

Values
Output

10000000 → .89 .04 .08 → 10000000

01000000 → .15 .99 .99 → 01000000

00100000 → .01 .97 .27 → 00100000

00010000 → .99 .97 .71 → 00010000

00001000 → .03 .05 .02 → 00001000

00000100 → .01 .11 .88 → 00000100

00000010 → .80 .01 .98 → 00000010

00000001 → .60 .94 .01 → 00000001

15

16

6/3/2020

9

Plot of Squared Error

Evolving Weights

17

18

6/3/2020

10

Momentum

• One of many variations
• Modify the update rule by making the weight update on the nth

iteration depend partially on the update that occurred in the (n-1)th
iteration

• Minimizes error over training examples
• Speeds up training since it can take 1000s of iterations

)1()(nwxnw jijijji

When to Stop Training?

• Continue until error falls below some predefined threshold
• Bad choice because Backpropagation is susceptible to overfitting
• Won't be able to generalize as well over unseen data

19

20

6/3/2020

11

Example: ALVINN

• ALVINN uses a learned ANN to steer an autonomous
vehicle driving at normal speeds on public highways

• Input to network: 30x32 grid of pixel intensities obtained from
a forward-pointed camera mounted on the vehicle

• Output: direction in which the vehicle is steered
• Trained to mimic observed steering commands of a human

driving the vehicle for approximately 5 minutes

Example: ALVINN

21

22

6/3/2020

12

Tanh and Sigmoid Activation Functions

• Tangent Hyperbolic: Output
always lies between -1 and 1 no
matter what inputs are

• Sigmoid: Output always lies
between 0 and 1 no matter
what inputs are

ReLU and ELU Activation Functions

• Rectified Linear Unit (ReLU): If
input <= 0, output is 0 else
equal to input

• Exponential Linear Unit (ELU): If
input >0 same as ReLU, else
slightly below 0

https://mlfromscratch.com/activation-functions-explained/

23

24

6/3/2020

13

Relu6, Softplus & Softsign Activation Functions
• ReLU6: If input <= 0, output is

0 else if input <= 6 equal to
input else equal to 6

• Sofsign: y = x / (1 + |x|)Softplus: f(x) = ln(1+ex) Softmax: f(x) = ln(1+ex)

Loss Functions

• The loss function (aka cost function) is to be minimized to get the best
values for each parameter (such as weight and bias) of the model.

• For evaluation of the model, cost function need to be defined.
• The minimization of cost function is the driving force for finding the

optimum value of each parameter.
• Some cost functions are:

• L1 or L2 for regression
• Cross entropy for classification

25

26

6/3/2020

14

Optimizer

• Optimizer helps to reach best values of the parameters.
• In each iteration, the value changes in the direction suggested by an

optimizer.
• Given a set of 16 weight values (w1, w2, w3, …, w16) and 4 biases

(b1, b2, b3, b4), the initial assignment is zero of one or any number.
• Optimizer suggests whether w1 and other params should increase or

decrease in the next iteration of (learning algorithm backpropagation)
while trying to minimize the loss.

Some Optimizers

• Adaptive techniques – adadelta, adagrad help converging faster for
complex neural networks.

• Adam outperforms adaptive techniques, however, is computationally
costly.

• Stochastic Gradient Descent
• Adaptive learning rates

27

28

6/3/2020

15

Evaluation Metrics

• Metrics are used for evaluation of regressor or classifier.
• Some of the metrics are classification accuracy, logarithmic loss and

area under ROC curve.
• Classification accuracy is the ratio of the number of correct

predictions to the number of all predictions.

Basics of TensorFlow

• Deep learning framework released by Google in November 2015
• Deep learning does a wonderful job in pattern recognition, especially

in the context of images, sound, speech, language, and time-series
data.

• Installation: https://www.tensorflow.org/install/
• Jupyter Notebooks: https://github.com/Apress/Deep-Learning-Apps-

Using-Python

29

30

6/3/2020

16

What is a Tensor

• A tensor is a mathematical object and a generalization of scalars,
vectors and matrices.

• A tensor can be represented as a multidimensional array.
• A tensor with zero rank (order) is a scalar.
• A tensor with rank 1 is a vector/array.
• Matrix is a tensor of rank 2.

• 5: This is a rank 0 tensor; this is a scalar with shape [].
• [2.,5., 3.]: This is a rank 1 tensor; this is a vector with shape [3].
• [[1., 2., 7.], [3., 5., 4.]]: This is a rank 2 tensor; it is a matrix with shape [2, 3].
• [[[1., 2., 3.]], [[7., 8., 9.]]]: This is a rank 3 tensor with shape [2, 1, 3].

Structure of a TensorFlow program
• Build the computational graph in the

construction phase.
• Run the computational graph in the

execution phase.
• A computational graph is a series of

TensorFlow operations arranged into a
graph of nodes.

• The simplest operation is a constant
that takes no inputs but passes outputs
to other operations that do
computation.

• An example of an operation is
multiplication (or addition or
subtraction that takes two matrices as
input and passes a matrix as output).

• A computational graph needs to be
ruin in a session which encapsulates
control and state of TF runtime.

31

32

6/3/2020

17

Convert Image to a Tensor

Some Common Tensorflow Loss Functions
• tf.contrib.losses.absolute_difference
• tf.contrib.losses.add_loss
• tf.contrib.losses.hinge_loss
• tf.contrib.losses.compute_weighted_loss
• tf.contrib.losses.cosine_distance
• tf.contrib.losses.get_losses
• tf.contrib.losses.get_regularization_losses
• tf.contrib.losses.get_total_loss
• tf.contrib.losses.log_loss
• tf.contrib.losses.mean_pairwise_squared_error
• tf.contrib.losses.mean_squared_error
• tf. contrib.losses.sigmoid_cross_entropy
• tf.contrib.losses.softmax_cross_entropy

33

34

6/3/2020

18

Using TensorFlow

• TensorFlow basics
• MLP: Implementing a hidden layer - MLP

Deep Learning with Keras

Define
the model

Compile
the model

Fit model
with

training
data

Make
predictions

● Create
sequential
model

● Add layers

● Apply loss
function

● Apply
optimizer

Prepare
Data

● Acquire
data

● Load
data

● Preproc
ess data

● Train model
by calling fit

● Evaluate
model

● Generate
predictions

● Save the
model

35

36

6/3/2020

19

Using Keras for MLP training

• MLP in Iris Dataset

Convolutional Neural Networks (CNN)
• A deep neural network (DNN) is an artificial neural network (ANN) with

multiple layers between the input and output layers.
• CNN is a deep, feed-forward ANN in which the neural network preserves

the hierarchical structure by learning internal feature representations and
generalizing the features in the common image problems like object
recognition and other computer vision problems.

• It is not restricted to images; it also achieves state-of-the-art results in
natural language processing problems and speech recognition.

• A convolution is a linear operation that involves the multiplication of a set
of weights with the input

• CNN takes two-dimensional input, the multiplication is performed between
an array of input data and a two-dimensional array of weights, called a
filter or a kernel.

37

38

6/3/2020

20

CNN - Convolution

• Imagine filtering an image to detect edges, one could think of edges
as a useful set of spatially organized ‘features’

• Imagine now if one could learn many such filters jointly along with
other parameters of a neural network on top

• Each filter can be implemented by multiplying a relatively small
spatial zone of the image by a set of weights and feeding the result to
an activation function

• Because this filtering operation is simply repeated around the image
using the same weights, it can be implemented using convolution
operations

• The result is a CNN for which it is possible to learn both the filters and
the classifier using SGD and the backpropagation algorithm

CNN – Pooling and Subsampling
• In a convolutional neural network, once an image has been filtered by

several learnable filters, each filter bank’s output is often aggregated
across a small spatial region, using the average or maximum value.

• Aggregation can be performed within non-overlapping regions, or
using subsampling, yielding a lower-resolution layer of spatially
organized features

• This gives the model a degree of invariance to small differences as to
exactly where a feature has been detected

• If aggregation uses the max operation, a feature is activated if it is
detected anywhere in the pooling zone

• The result can be filtered and aggregated again

39

40

6/3/2020

21

…

Convolutions Pool & Decimate Convolutions Pool & Decimate MLP

…

Repeat

A typical CNN architecture
• Many feature maps are obtained from

convolving learnable filters across an image
• Results are aggregated or pooled & decimated
• Process repeats until last set of feature maps

are given to an MLP for final prediction

Convolutional Neural Networks (CNN)
There is an input image that we’re working with. We perform a series
convolution + pooling operations, followed by a number of fully
connected layers. If we are performing multiclass classification the
output is softmax.

• There is an input image that we’re working with. We perform a series convolution
+ pooling operations, followed by a number of fully connected layers.

• If we are performing multiclass classification the output is softmax.

41

42

6/3/2020

22

Convolution
• Convolution is a mathematical operation that merges tow sets of

information.
• Convolution is applied on the input data using a convolution filter to

produce a feature map.
• Convolution operation is performed by sliding filter over the input.

Convolution
• At every location, we do element-wise matrix multiplication & sum the result.
• Slide the filter to the right and perform the same operation.
• Continue same way and aggregate the convolution results in the feature map.

43

44

6/3/2020

23

3D Convolution
• Image is a 3D matrix with dimensions of height, width and depth (RGB).
• A convolution filter is 3D as well.
• Multiple convolutions are performed on an input, each using different filter

and resulting in distinct feature map.
• All feature maps are stacked together as a final output of the convolution layer.

Stride
• Stride specifies how much we move the convolution filter at each step.
• Bigger stride are used for less overlap and resulting feature map is smaller.

45

46

6/3/2020

24

Padding
• To maintain the same dimensionality as input, use padding to

surround the input with zeroes or values at the edge.
• Padding is commonly used to preserve the size of feature maps.

Pooling
• Pooling is used to reduce the dimensionality – thus reduce number of

parameters, shorten training time etc.
• Pooling downsamples each feature map independently, reducing the

height and width, keeping the depth intact.
• Most common type of pooling is max pooling.

47

48

6/3/2020

25

Dropout
• Dropout is used to prevent overfitting.
• State-of-the-art models which have 95% accuracy get a 2% accuracy

boost just by adding dropout.
• In dropout, at each iteration a neuron is temporarily “dropped” or

disabled with probability p.
• All the inputs and outputs to this neuron will be disabled at the

current iteration.
• A dropped out neuron at one step can be active at the next one.
• The hyperparameter p is called the dropout-rate – say 0.5.
• 0.5 corresponds to 50% of the neurons being dropped out.

Dropout forces every neuron to be
independent

49

50

6/3/2020

26

Hyperparameters in CNN

• Typically 3x3 filters are used, but 5x5 or 7x7 are also used as per
need. Filters are 3D!!

• Filter count: Power of two anywhere between 32 and 1024. More
filters result in a powerful model, but results in overfitting.

• Start with a small number of filters at the initial layers, and increase
count as we go deeper into the network.

• Stride: Default value is 1.
• Padding: Usually, padding is used.

Fully Connected (FC)
• After convolution + pooling layers a couple of fully connected layers

are added to wrap up the CNN architecture.
• This is same as fully connected ANN architecture.
• The output of both, convolution and pooling layers are 3D volumes &

FC expects a 1D vector of numbers.
• The output of final pooling layer is flattened which becomes input to

FC layer.

Training
• CNN is trained in the same way like ANN using backpropagation.

51

52

6/3/2020

27

CNN as a Combination of Two Components

• A CNN model can be thought as a combination of two components.
• Feature extraction part: Convolution + pooling layers perform feature

extraction. (e.g. two eyes, long ears, four legs, a short tail etc.).
• Fully connected layer acts as a classifier on top of the features and

assigns probability for a particular class (e.g. dog).
• Convolution layers are the main powerhouse which detect

meaningful features – given only an image and a label.
• The first layer detects edges, next layer detects shapes etc.

Sample Example of CNN

53

54

6/3/2020

28

Code

ImageNet Dataset

• The ImageNet dataset is a very large collection of human annotated
photographs designed by academics for developing computer vision
algorithms.

• The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is an
annual competition that uses subsets from the ImageNet dataset.

• ILSVRC is designed to foster the development and benchmarking of state-
of-the-art algorithms.

• More than 14 million images in the dataset.
• More than 21 thousand groups or classes (synsets).
• More than 1 million images that have bounding box annotations (e.g. boxes

around identified objects in the images).

55

56

6/3/2020

29

A Popular CNN Model: VGG Model

• VGG is a CNN model from
Oxford’s Visual Geometry Group
(VGG)

• Runner-up for ILSVRC
classification challenge 2014
with 7.3% error rate

• Simple architecture with 16
layer neural net

• Trained on 4 GPUs for 3 weeks.
• See the paper:

https://arxiv.org/abs/1409.1556

More CNN Models

• GoogLeNet (Google Inc.):
• Winner of ILSVRC 2014 challenge.
• 22 layers with carefully crafted design to keep the computations constant.
• Described in the paper: https://arxiv.org/pdf/1409.4842.pdf.

• ResNet (Microsoft Research):
• Winner of ILSVRC 2015 challenge.
• 8x deeper than VGG, but still with lower complexity.
• 182 layers!!
• Described in paper: https://arxiv.org/pdf/1512.03385.pdf

57

58

