Output: knowledge
representation

Most of these slides (used with permission) are based on the book:

Data Mining: Practical Machine Learning Tools and Techniques
by I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal

Output: Knowledge representation

* Tables

* Linear models

* Trees

* Rules

* Classification rules

* Association rules

* Rules with exceptions

* More expressive rules

* Instance-based representation
* Clusters

Output: representing structural patterns

Many different ways of representing patterns

* Decision trees, rules, instance-based, ...
Also called “knowledge” representation
Representation determines inference method

Understanding the output is the key to understanding the
underlying learning methods

Different types of output for different learning problems (e.g.,
classification, regression, ...)

Decision tables

Simplest way of representing output:

* Use the format that is used for representing the input!

* Decision table for the weather problem:

Outlook Humidity Play
Sunny High No
Sunny Normal Yes
Overcast High Yes
Overcast Normal Yes
Rainy High No
Rainy Normal No

Main problem: selecting the right attributes

Decision table classifier — uses majority class

@ Weka Explorer i m} X
[Preprocess | Glassify | Cluster [Associate | Selectattributes | Visualize | Auto-WEKA
Classifior
| choose | K1-8"weka BestFirst-D1-N "
Test options _ Classifier output _
(® Use training set === Run information === [«
O Suppliedtest set
Scheme: welta.classifiers.rules.DecisionTable —X 1 -5 “weka.attributeSelection.BestFirat —D 1
() Cross-validation Folcs Relation: weather
(O Percentage spiit Instameed: %
Attributes: 5
Wore options. outlook
termperature
humidicy
‘ (Nom) play v iy
pla
Test mode: evaluate on training data
Start
Result list (right.click for options) -— Classifier model (full training set) ——

19:54:52 - rees J48

| 20:17:06 -trees 148

| 20:17:25 - bayes NaiveBayes

| 21:24:05 - rules DecisionTable

21:24:47 - rules.DecisionTable

21:25:04 - rules DecisionTable.

eave one out)

Fzature s=t: §

IELS e L

Status.

oK Log ‘ o0

Linear models

Another simple representation
Traditionally primarily used for regression:

* Inputs (attribute values) and output are all numeric
Output is the sum of the weighted input attribute values
The trick is to find good values for the weights

There are different ways of doing this, which we will consider
later; the most famous one is to minimize the squared error

A linear regression function for the CPU

performance data
PRP: Performance CACH: Cache

1250 T r ‘ :

1000+ x 1

750

PRP

500+

250

0 50 100 150 200 250 300
CACH

PRP = 37.06 + 2.47CACH

Linear models for classification

Binary classification (Logistic regression)

Line separates the two classes

* Decision boundary - defines where the decision changes from one
class value to the other

Prediction is made by plugging in observed values of the
attributes into the expression

* Predict one class if output > 0, and the other class if output <0
Boundary becomes a high-dimensional plane (hyperplane)
when there are multiple attributes

Logistic regression for classification

© Weka Explorer - [} %
[Preprocess | Classity | Cluster | Associate | Select atributes | visualize | Auto-WEKA | Forecast |
Classifier
Choose | SimpleLogistic -1 0-I 500 -H 50-W 0.0 ‘
Test option: Classifier output
(®) Use training set S T K
O Supplied testset
Scheme: weka, classifiers. fancoions. Simplelogistic 1 0 -4 500 —H 50 - 0.0
() Cross-alidation i Relation: weather.symbolic
O Percentage spit 6 e 2
Attributes: 3
Hlore options... eatlook
cemperature
numidity
| avom) piay r e
lay
Test mode: evaluate on training data
Classifier medel (full trainiag set)
22:43.49 - wles DecisionTable simplelogistics
22:54:31 - functions LinearRegression -
22:51:50 - Tunctions LinearRegression i
23:00:11 -functions SimpleLogistic (outlook=overcast] ¥ 1.88 +
23:01:09 - functions SimpieLogistic (temperature=mild] * 0.7 +
| 23:01:52 - functions SimpleL ogistic (rumidity=normal] * 1.65 +
{windy=FALSE] + 1.26
Class no :
1s o+
[outlook=overcast] * -1.88 +
(temperature=mila] * -0.75 +
(hanidity=normall * -1.65 +
(Windy=FALSE] * -1.26
Tire taken to build medel: 0.01 seconds
L
v
Status S
o Lo | g X0
S t i t f i I
P i
O Weka Explorer - O X
| [Preprocess | classiy | custer [associate | selectatiioutes | visualize | Auto-weKa | Forecast |
[opentie J| openwmi. || opembB. || Geneme. || undo I(et J(save]
Filter
Choose |RemovewithValues -5 0.0-C last-L 3 | Aeply | stap
Current relation Selected attribute
Relafion: iris-weka filters.unsupenvised instance RemoveWithV. Atibutes: 5 Name: class Type: Nominal
Instances: 100 Sum ofweights: 100 Wissing: 0 (1%) Distinct: 2 Unique: 0 (0%)
Attributes | o | Lavel | Count | weignt |
1 ris-setosa 50 500 |
I 50 500 |
(. Al J L None J 1 Invert J Pattsm | 3 Irisirginica 0 00 |
| No. | | Name |
[4[] sepaltengtn !
| 2] sepaiwidh |
| 3 petallength |
| 4[] petalwidth |

| Ctass: class (Nom)

v)| visualize Al |

Status.

ok

10

10

Separating setosas from versicolors

X % iris setosa iris versicolor iris virginica
X X X

1.5} XXX X 8

X Pl %
X KHEKAKHKAK
XX XX X
X XX
1+ X X X ¥ 8

Petal width

+

0.5} +

+ At o+

+H+ +
+ bt +
+ o+t

2.0

3
Petal length

0.5PETAL-LENGTH -

petal

sepal

0.8PETAL-WIDTH

petal

0

sepal sepal

petal

11

11

Separating setosas from versicolors —iris2class.arff

© Weka Explorer = [} bes
Preprocess | Classity | Cluster | Associats | Select attinutes | visualize | Auto-WEKA |
Classifier
—
| Choose |simpleLogistic -1 0 - 500 -H 504 0.0
Test options Classifier output
@® use training set o Ll R S i
-
(U Supplied test set Time taken to test model on training data: 0 seconds
O Crossvalidation 10 e ey
(U Percentage split 6 66
N Correctly Classified Instances 100 100 s
More options. Incorrectly Classified Instances a [
Kappa statistic 1
Mean sbsoluce error 0.1415
[(Nom) class ” Root mean squared error 0.1555
Relative absolute error 28.3078 %
i Root relative squared error 31.1007 3
Total Number of Instances 100
Resultlist (right-click for options)
i — Detailed Accuracy By Class m
19:54:52 - trees J48
20:17:06 - trees J48 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Clsg
20-17:25 - bayes NaveBayes l.000 0.000 1.000 1000 1.000 1.000 1.000 1.000 I
21:24:05 - rules DecisionTable . 1.000 0.000 l.ﬂDI:I 1.000 1.000 1.000 l.ﬂDAj 1.000 Iri
Weighted Avg. 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000
21:24:47 - rules DecisionTable
21:25:04 - rules DecisionTanle e CofaR M
21:32:23 - functions LinearRegression
21:32:37 - funchions SimpleLogistic 2 b < classifisd as
21:39:42 - funclions. SimpleLog R S
0 50 | b = Iris-versicolor
ELS
status R
Los | g X0
oK
12

12

Decision trees

“Divide-and-conquer” approach produces tree
Nodes involve testing a particular attribute

Usually, attribute value is compared to constant

Leaves assign classification, set of classifications, or probability

distribution to instances

Unknown instance is routed down the tree

13
D isi t J I 8 I .tI I
@ Weka Explorer X
[Preprocess | classity | Cluster | Associate | Select atributes | Visuaiize | Auto-wEKa | Forecast |
Classifier S
Choose |.J48-C 02511
Test options _ Classifier output
) Uss o sl === Run information === ‘%
() Supplied test set
Schene: weka.classifiers.trees.J48 -C 0.25 - 2
O Crosswalidation Folds Relation: iris
O Percentage spit Distanees: 20
Attribates: 5
P sepallengsn
sepalwidsh
= petallength
| (om) ciass v
class
Test mode: evaluabe on training data
=== Classifier medel (full training set) ===
| 22:43:43 - ulss DecisionTable 742 pruasd tree
| 22:51:31 -functions. LinearRegrassion | | | | TS
| 22:51:50 -functions.LinearRegression s, 96 TELARREARR (50, B
| 23:00:11 - functions. SimpleLogistic L
| 22:01:09 - functons. SimpleLogistic | petalwidch <= 1.7
| 22:01:52 - functions. SimpleLogistic I
| 23:10:49 -functions SimpleL ogistic !
| i ||| petalwidth <= 1.5 .
oy = | |1 | peralwideh > 1.5: (3.0/1.0)
R R RN | petalwidch > 1.7: Iris-virginica {46.0/1.0)
s
9
Time taken to build medel: 0.01 ssconds |
g
" o v
status —
oK ‘ Log | g 0
14

14

Interactive tree construction |

& Weka Classifier Visualize: 21:43:53 - trees.J48 (iris) = O X
| predicted ciass (vom) 7] | ¥: predicted class hom) B
lom: | setect instance [
| clear || open || sae | Jiter o
Plot: iris_predicted
I s T 1]
; gk L
: A
|
v
s x
ol ®ooxox
;g % ®E %
S
Ll et
5t L
5 x x
L }j
e
S — " Ir)s-vlrginlca‘ b
Iris-versicoler b
Class colour
Iris-sstosa Tris—vessicolor Toiciginioe
iris virginica
15
petal sepal petal sepal petal sepal
Interactive tree construction |l
& Weka Classifier Tree Visualizer: 21:43:53 - trees.J48 (iris) — O =
Tree View
petatwidth
/ <= 06 A =06 \
Itis-setosa (50.0y petalwidth
/ =17 /\\ — ‘\\-\\
petallength Ins-wrgm.!c_el_ (46.0/1.0
/ =48 A =48 \
Iisversicalor (48,011 0)| petalwidth
/<=1_5/\\‘=1-5\‘\\
Iris-wirginica ¢3.0) Irig-wersicalor 2.0/1.00
16

16

Nominal and numeric attributes in trees

Nominal:
number of children usually equal to number values
= attribute won’t get tested more than once

* Other possibility: division into two subsets

Numeric:

test whether value is greater or less than constant

= attribute may get tested several times

* Other possibility: three-way split (or multi-way split)
* Integer: less than, equal to, greater than

e Real: below, within, above

17

17

Missing values

Does absence of value have some significance?
Yes = “missing” is a separate value
No = “missing” must be treated in a special way

* Solution: assign instance to most popular branch

* Solution: Use Weka filter for filling in missing values (See
Weka presentation)

18

18

Predicting CPU performance

Example: 209 different computer configurations

Cycle time

(ns)

Main memory Cache
(Kb) (Kb)

Channels

Performance

MYCT

MMIN MMAX CACH CHMIN CHMAX

PRP

125

2 29
208 480
209 480

256 6000 256 16 128

198

8000 32000 32 8 32 269

512 8000 32 0 0
1000 4000 0 0 0

67
45

Linear regression function

PRP = -56.1 + 0.049 MYCT + 0.015 MMIN + 0.006 MMAX

+ 0.

630 CACH - 0.270 CHMIN + 1.46 CHMAX

19
& Weka Explorer s [} X
[Preprocess [elassity | Gluster | Associate | Selectatributes | visualize | Auto-WEKA
Classifier
| Choose v ion -5 0-R 1.0E-8 4 |
Test options Classifier output
®) Use training set functions.LinearRegression -§ 0 -R 1.0E-8 -num-decimal-places 4 i
(U Supplied test set
Ins :
O Cross+alidation Folds 1 Atributes: 7
MYCT
(O Percentage spiit i
T T I MY
Wore options g
CEMIN
CRMAX
[(Num) dlass r onan
= Test mode: evaluate on training data
Start 5
A === Classifier model {full training set) ===
18:54:52 - trees J48
Linear Regression Model
20:17:06 - trees.J48
20:17:25 - bayes NaiveBayes Class =
21:24:05 - rules.DecisionTable
21:24:47 - rules.DecisionTable 0.045L * MYCT +
21:25:04 - rules DedisionTasle RTLEE ¥
21:32:23 - functions LinearRegression U0y ToenE +
0.6262 * CACH +
21:32:37 - functions.SimpleLogistic i wiaae
21:39:42 - functions. SimpleLogistic -56.075
21:43:00 - functions. SimpleLogistic
21:43553 - roes 48 Time taken to build model: 0.07 seconds
21:48:29 - functions LinearRegression e
S o |
status B
=5 Log | _qu x0
20

20

10

Trees for numeric prediction

* Regression: the process of computing an
expression that predicts a numeric quantity

* Regression tree: “decision tree” where each leaf
predicts a numeric quantity

* Predicted value is average value of training instances
that reach the leaf

* Model tree: “regression tree” with linear
regression models at the leaf nodes

21

21
:
Regression tree for the CPU data — M5P Algo.
@ Weka Explorer — o X
[Preprocess [classity | cluster [Assodiate | setectatrioutes | visual t]
Classifier
Choose | M5P -M 4.0
Test options _ Classifier output
Q
232216 -trees J48
232254 - trees)48
Status
oK ‘ Log ‘ 0
22
22

11

@ Weka Classifier Tree Visualizer; 23:28:59 - trees.M5P {cpu) = O x
AL L
CHMIN
=75 //\kk\ »7.5

<=20000 »28000
MMAX/ \L;ﬁ\(z-;m 302%)
==13240 13240
CAEH/// LM 4 (11724.185%) |
=815 »81 5\
L2 (511@ LW 3 (4130.824%)

Regression tree for the CPU data — M5P Algo.

23
Regression tree for the CPU data
|783 (5!359%)'
‘59,3 (24116.9%)' |2a1 (11/55%)‘ ‘492 (7153.9%)’
|37.3 (19.'11.3%)| |1s.3 (maa%)|
24

12

Model tree for the CPU data

Gy

<75 >7.5
Aﬂs.s 28,000 >28,000

MMAX LM4 (50/22.1%)
<4250 >4250
L1 (857.32%)| @
<05 w.s.s.s)

LM2 (26/6.37%) LM3 (24/14.5%)

LM5 (21/45.5%)

LM6 (23/63.5%)

LM1 PRP = 8.29 + 0.004 MMAX + 2.77 CHMIN
LM2 PRP = 20.3 + 0.004 MMIN — 3.99 CHMIN

+0.946 CHMAX
LM3 PRP = 38.1 + 0.012 MMIN

LM4 PRP = 19.5 + 0.002 MMAX + 0.698 CACH

+0.969 CHMAX
LM5 PRP = 285 1.46 MYCT + 1.02 CACH
—9.39 CHMIN

LM6 PRP = —65.8 + 0.03 MMIN — 2.94 CHMIN

+4.98 CHMAX

25

25

Classification rules

* Popular alternative to decision trees

* Antecedent (pre-condition): a series of tests (just like the tests at

the nodes of a decision tree)

* Tests are usually logically ANDed together (but may also be

general logical expressions)

* Consequent (conclusion): classes, set of classes, or probability
distribution assigned by rule

* Individual rules are often logically ORed together

* Conflicts arise if different conclusions apply

26

26

13

From trees to rules

* Easy: converting a tree into a set of rules

* One rule for each leaf:

* Antecedent contains a condition for every node on the path from the root
to the leaf

* Consequent is class assigned by the leaf
* Produces rules that are unambiguous
* Doesn’t matter in which order they are executed

* But: resulting rules are unnecessarily complex

* Pruning to remove redundant tests/rules

27

27
From rules to trees — not straightforward
The exclusive-or problem
@ If x=1 and y=0 then class = a
If x=0 and y=1 then class = a
If x=0 and y=0 then class = b
1 No '\ Yes If x=1 and y=1 then class = b
0
No | Yes No\ Yes
0 1 b a a b
* Even if the rule involves two attributes, split on one attribute first to get a sub-
tree
28
28

14

Interpreting rules

* What if two or more rules conflict?

¢ Give no conclusion at all?

* Go with rule that is most popular on training data?
* What if no rule applies to a test instance?

* Give no conclusion at all?

* Go with class that is most frequent in training data?

29

29

Association rules

* Association rules...
* ... can predict any attribute and combinations of attributes
* ...are notintended to be used together as a set

* Problem: immense number of possible associations

* Output needs to be restricted to show only the most
predictive associations
= only those with high support and high confidence

30

30

15

Support and confidence of a rule

* Support: number of instances

pl’edICted COI’I’eCt|y Outlook Temp Humidity = Windy Play
Sunny Hot High False No
* Confidence: number of correct Sunny Hot High True No
o . . Overcast Hot High False Yes
predictions, as proportion of all Rainy wid g foe ves
instances that rule applies to Rainy ~ Cool Normal False Yes
. Rainy Cool Normal True No
* Example: 4 cool days with normal Overcast Cool Normal True Yes
B H Sunny Mild High False No
h um Id Ity Sunny Cool Normal False Yes
If temperature = cool then Rainy Mild Normal False Yes
humidity = normal Sunny Mild Normal True Yes
Overcast Mild High True Yes
_ . _ 0 Overcast Hot Normal False Yes
= Support = 4, confidence = 100% Rainy wid High e o
* Normally: minimum support and
confidence pre-specified (e.g. 58
rules with support > 2 and
confidence > 95% for weather
data) 31

31

Interpreting association rules

* Interpretation is not obvious:

If windy = false and play = no then outlook = sunny
and humidity = high

is not the same as

If windy false and play

If windy = false and play = no then humidity = high

no then outlook = sunny

* |t means that the following also holds:

If humidity = high and windy = false and play = no
then outlook = sunny

32

32

16

Association rules — weather.arff

& Weka Explorer

[Preprocess | ciassity | Cluster | Associate | Selectatrinutes | visuaiize | Auto-WEKA |

Assaciator

| Choose |Apriori N 10-T0-C0.8-D0.05-U1.0-M 04 -8-1.0-¢-1

Associator output

Start

Result list right-cic...

Minimum supporc: .15 (2 instances)
Minimum metric <confidence»: 0.9
Nurber of cycles performed: 17

Generated sets of large itemsets:
Size of set of large itemsets L{l}: 12
Size of set of large itemsets L{2): 47
Size of set of large itemsets L{3): 39
Size of set of large itemsets L{4): 6

Best rules found:

1. outlook=overcast 4 => play=yes 4 <conf:(1)> 1ift:(1.56) lev:(d.1) [1] conv:{1.43)
2. temperature=cool 4 humidity=normal 4 <conf:{1)> 1ift:(2) lev:(0.14) [2] conv:(2)

3. humidity=normal windy=FALSE 4 ==> play=ves 4 <conf:{1)> lift:({l.56) lev:(0.1) [1] conv:(1.43)
4. outlook-sunny play-no 3' —> humidity-high 3 .11y [1] convs (1.5)

5. outlook-sunny humidity-high 3 —> play-no 3 (0.14) [1] conv: (1.93)

€. outlook-rainy play=yes 3 —> windy=FALSE 3 $(0.09) [1] conv: (1.29)

7. outlook=rainy windy=FALSE 3 play=yes 3 <conf:{l)> lift:({1.56) lev:(0.08) [1] conv:(1.07)

8. temperature=cool play=yes 3 humidity=normal 3 <conf:{l)> 1ift:{2) lev:{0.11) [1] conv: (L.5)
5. outlook=sunny temperature=hot 2 => humidity=high 2 <conf:(1)> Iift:({2) lev:{0.07) [1] conv: (1)
10. temperature=hot play=no 2 => outlook=sumny 2 <conf:(1)> 1ift:(2.8) lev:(0.08) [1] conv:(1.28)

d

Status S
oK Log ‘ P

33

Rules with exceptions

* Idea: allow rules to have exceptions
* Example: rule for iris data

If petal-length = 2.45 and petal-length < 4.45 then Iris-versicolor

* New instance:

Sepal Length Sepal Width Petal Length Petal Width Type
5.1 35 26 0.2 ?

¢ Modified rule:

If petal-length =2 2.45 and petal-length < 4.45 then Iris-versicolor
EXCEPT if petal-width < 1.0 then Iris-setosa

34

34

17

More on exceptions
* Default...except if...then...
is logically equivalent to
if...then...else
(where the “else” specifies what the “default” does)

* But: exceptions offer a psychological advantage

— Assumption: defaults and tests early on apply more widely than
exceptions further down

— Exceptions reflect special cases
* Advantages of rules

— Rules can be updated incrementally
* Easy to incorporate new data

* Easy to incorporate domain knowledge
— People often think in terms of exceptions

— Each conclusion can be considered just in the context of rules and
exceptions that lead to it

35

Rules involving relations

* So far: all rules involved comparing an attribute-value to a constant
(e.g. temperature < 45)

* These rules are called “propositional” because they have the same
expressive power as propositional logic

* What if problem involves relationships between examples (e.g.
family tree problem from above)?
* Can’t be expressed with propositional rules

* More expressive representation required

P: agrizzly is a bear.
Q: a bear is a mammal.
R: a grizzly is a mammal.

Propositional logic example P&Q->R

Each proposition symbol represents an atomic
statement.

Atomic statements can be combined with legical
connectives to form compound statements.
~P,P&Q, PVQ,P=Q,P->Q 36

36

18

The shapes problem

* Target concept: standing up

* Shaded: standing
Unshaded: lying

Shaded: standing
Unshaded: lying

37

37
A propositional solution
Width Height Sides Class
2 4 4 Standing
3 6 4 Standing
4 3 4 Lying
7 8 3 Standing
7 6 3 Lying
2 9 4 Standing
9 1 4 Lying
10 2 3 Lying
If width > 3.5 and height < 7.0
then lying
If height > 3.5 then standing
38
38

19

Using relations between attributes

Comparing attributes with each other enables rules like
this:

If width > height then lying
If height > width then standing

This description generalizes better to new data
Standard relations: =, <, >

But: searching for relations between attributes can be
costly

Simple solution: add extra attributes
(e.g., a binary attribute “is width < height?”)

39

Instance-based representation

Simplest form of learning: rote learning

* Training instances are searched for instance that most closely resembles

new instance

* The instances themselves represent the knowledge
* Also called instance-based learning

Similarity function defines what’s “learned”
Instance-based learning is lazy learning

Methods: nearest-neighbor, k-nearest-neighbor, ...

40

40

20

The distance function

Simplest case: one numeric attribute

* Distance is the difference between the two attribute values involved (or a

function thereof)

Several numeric attributes: normally, Euclidean distance is used

and attributes are normalized

Nominal attributes: distance is set to 1 if values are different, O if

they are equal

Are all attributes equally important?
* Weighting the attributes might be necessary

41

& Weka Clusterer Visualize: 22:22:35 - EM (iris) —; X
{X Instance_number (Num) 'J ‘Y sepallength (Num) 'J
\ Calour: Cluster (Nom) 'J \ Select Instance VJ
| Clear H Open H Save | ifter » O
Plot: iris_clustered
7.9 i
g =
e P o
¥ 5 % i
% L,
6.1 WA SR
* = 5 ®
Chel i # sy, B
L™ Ea i Ed “ §
= = % %
ol = T % %
SR ®
E %
4.3 i .
] 74,5 143 =4
Y
Class colour
clusterd clusterl slustec:

21

Learning prototypes

o o
o o © 5
o 0. o °© o,
oo..o o..o
o
o °© o °© o
o°°°°o
o O

* Only those instances involved in a decision need to be stored
* Noisy instances should be filtered out

43

43

Rectangular generalizations

* Nearest-neighbor rule is used outside rectangles

* Rectangles are rules! (But they can be more conservative than
“normal” rules.)

* Nested rectangles are rules with exceptions

44

44

22

Representing clusters |

Simple 2-D representation Venn diagram

One cluster per example Multiple clusters per example

d
¢
a) ¢
J
h
/ - b
f
i
) &

45

45

Representing clusters Il

Probabilistic assignment Dendrogram

Probability of belonging to Hierarchical clusters
each cluster

1 2 3

0.4 0.1 0.5
0.1 0.8 0.1
0.3 0.3 0.4

0.1 0.1 0.8
0.4 0.2 0.4
0.1 0.4 0.5 ‘

0.7 0.2 0.1 g aciedk©bDdjfrfh
0.5 0.4 0.1

D SR e oo o

46

46

