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Output: knowledge 
representation

Most of these slides (used with permission) are based on the book:

Data Mining: Practical Machine Learning Tools and Techniques
by I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal
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Output: Knowledge representation

• Tables
• Linear models
• Trees
• Rules
• Classification rules
• Association rules
• Rules with exceptions
• More expressive rules
• Instance-based representation
• Clusters
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Output: representing structural patterns

• Many different ways of representing patterns
• Decision trees, rules, instance-based, …

• Also called “knowledge” representation
• Representation determines inference method
• Understanding the output is the key to understanding the 

underlying learning methods
• Different types of output for different learning problems (e.g., 

classification, regression, …)
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Decision tables

• Simplest way of representing output:
• Use the format that is used for representing the input!

• Decision table for the weather problem:

• Main problem: selecting the right attributes

NoNormalRainy

NoHighRainy

YesNormalOvercast

YesHighOvercast

YesNormalSunny

NoHighSunny

PlayHumidityOutlook
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Decision table classifier – uses majority class
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Linear models

• Another simple representation
• Traditionally primarily used for regression:

• Inputs (attribute values) and output are all numeric
• Output is the sum of the weighted input attribute values
• The trick is to find good values for the weights
• There are different ways of doing this, which we will consider 

later; the most famous one is to minimize the squared error
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A linear regression function for the CPU 
performance data

PRP: Performance     CACH: Cache

PRP = 37.06 + 2.47CACH
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• Binary classification (Logistic regression)
• Line separates the two classes

• Decision boundary - defines where the decision changes from one 
class value to the other

• Prediction is made by plugging in observed values of the 
attributes into the expression
• Predict one class if output  0, and the other class if output < 0

• Boundary becomes a high-dimensional plane (hyperplane) 
when there are multiple attributes

Linear models for classification
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Logistic regression for classification
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Separating setosas from versicolors -
Preprocessing
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Separating setosas from versicolors

2.0 – 0.5PETAL-LENGTH – 0.8PETAL-WIDTH = 0
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Separating setosas from versicolors – iris2class.arff
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Decision trees

• “Divide-and-conquer” approach produces tree
• Nodes involve testing a particular attribute
• Usually, attribute value is compared to constant
• Leaves assign classification, set of classifications, or probability 

distribution to instances
• Unknown instance is routed down the tree
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Decision trees – J48 algorithm
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Interactive tree construction I
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Interactive tree construction II
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Nominal and numeric attributes in trees

• Nominal:
number of children usually equal to number values
 attribute won’t get tested more than once

• Other possibility: division into two subsets

• Numeric:
test whether value is greater or less than constant
 attribute may get tested several times
• Other possibility: three-way split (or multi-way split)

• Integer: less than, equal to, greater than
• Real: below, within, above
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Missing values

• Does absence of value have some significance?
• Yes  “missing” is a separate value
• No  “missing” must be treated in a special way

• Solution: assign instance to most popular branch
• Solution: Use Weka filter for filling in missing values (See 

Weka presentation)
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• Example: 209 different computer configurations

• Linear regression function

Predicting CPU performance

0

0

32

128

CHMAX

0

0

8

16

CHMIN

Channels PerformanceCache 
(Kb)

Main memory 
(Kb)

Cycle time 
(ns)

45040001000480209

67328000512480208

…

26932320008000292

19825660002561251

PRPCACHMMAXMMINMYCT

PRP = -56.1 + 0.049 MYCT + 0.015 MMIN + 0.006 MMAX
+ 0.630 CACH - 0.270 CHMIN + 1.46 CHMAX
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Predicting CPU performance
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Trees for numeric prediction

• Regression: the process of computing an 
expression that predicts a numeric quantity

• Regression tree: “decision tree” where each leaf 
predicts a numeric quantity
• Predicted value is average value of training instances 

that reach the leaf

• Model tree: “regression tree” with linear 
regression models at the leaf nodes
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Regression tree for the CPU data – M5P Algo.
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Regression tree for the CPU data – M5P Algo.
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Regression tree for the CPU data
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Model tree for the CPU data
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Classification rules

• Popular alternative to decision trees
• Antecedent (pre-condition): a series of tests (just like the tests at 

the nodes of a decision tree)
• Tests are usually logically ANDed together (but may also be 

general logical expressions)
• Consequent (conclusion): classes, set of classes, or probability 

distribution assigned by rule
• Individual rules are often logically ORed together

• Conflicts arise if different conclusions apply
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From trees to rules

• Easy: converting a tree into a set of rules
• One rule for each leaf:

• Antecedent contains a condition for every node on the path from the root 
to the leaf

• Consequent is class assigned by the leaf

• Produces rules that are unambiguous
• Doesn’t matter in which order they are executed

• But: resulting rules are unnecessarily complex
• Pruning to remove redundant tests/rules
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From rules to trees – not straightforward
The exclusive-or problem

• Even if the rule involves two attributes, split on one attribute first to get a sub-
tree
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Interpreting rules

• What if two or more rules conflict?
• Give no conclusion at all?

• Go with rule that is most popular on training data?

• …

• What if no rule applies to a test instance?
• Give no conclusion at all?

• Go with class that is most frequent in training data?
• …
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Association rules

• Association rules…
• … can predict any attribute and combinations of attributes
• … are not intended to be used together as a set

• Problem: immense number of possible associations
• Output needs to be restricted to show only the most 

predictive associations 
 only those with high support and high confidence
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NoTrueHighMildRainy

YesFalseNormalHotOvercast

YesTrueHighMildOvercast

YesTrueNormalMildSunny

YesFalseNormalMildRainy

YesFalseNormalCoolSunny

NoFalseHighMildSunny

YesTrueNormalCoolOvercast

NoTrueNormalCoolRainy

YesFalseNormalCoolRainy

YesFalseHighMildRainy

YesFalseHighHot  Overcast

NoTrueHighHotSunny

NoFalseHighHotSunny

PlayWindyHumidityTempOutlook
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Support and confidence of a rule
• Support: number of instances 

predicted correctly
• Confidence: number of correct 

predictions, as proportion of all 
instances that rule applies to

• Example: 4 cool days with normal 
humidity

 Support = 4, confidence = 100%
• Normally: minimum support and 

confidence pre-specified (e.g. 58 
rules with support  2 and 
confidence  95% for weather 
data)

If temperature = cool then 
humidity = normal
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Interpreting association rules

• Interpretation is not obvious:

is not the same as

• It means that the following also holds:

If windy = false and play = no then outlook = sunny 
and humidity = high

If windy = false and play = no then outlook = sunny
If windy = false and play = no then humidity = high

If humidity = high and windy = false and play = no
then outlook = sunny
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Association rules – weather.arff

34

Rules with exceptions

• Idea: allow rules to have exceptions
• Example: rule for iris data

• New instance:

• Modified rule:

If petal-length  2.45 and petal-length < 4.45 then Iris-versicolor

If petal-length  2.45 and petal-length < 4.45 then Iris-versicolor
EXCEPT if petal-width < 1.0 then Iris-setosa
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More on exceptions
• Default...except if...then...

is logically equivalent to
if...then...else

(where the “else” specifies what the “default” does)

• But: exceptions offer a psychological advantage
– Assumption: defaults and tests early on apply more widely than 

exceptions further down
– Exceptions reflect special cases

• Advantages of rules
– Rules can be updated incrementally

• Easy to incorporate new data

• Easy to incorporate domain knowledge

– People often think in terms of exceptions

– Each conclusion can be considered just in the context of rules and 
exceptions that lead to it
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Rules involving relations
• So far: all rules involved comparing an attribute-value to a constant 

(e.g. temperature < 45)
• These rules are called “propositional” because they have the same 

expressive power as propositional logic
• What if problem involves relationships between examples (e.g. 

family tree problem from above)?
• Can’t be expressed with propositional rules

• More expressive representation required

Propositional logic example
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The shapes problem

• Target concept: standing up

• Shaded: standing
Unshaded: lying
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A propositional solution

Lying3210

Lying419

Standing

Lying

Standing

Lying

Standing

Standing

Class

492

367

387

434

463

442

SidesHeightWidth

If width  3.5 and height < 7.0
then lying

If height  3.5 then standing
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Using relations between attributes

• Comparing attributes with each other enables rules like 
this:

• This description generalizes better to new data
• Standard relations: =, <, >
• But: searching for relations between attributes can be 

costly
• Simple solution: add extra attributes

(e.g., a binary attribute “is width < height?”)

If width > height then lying
If height > width then standing
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Instance-based representation

• Simplest form of learning: rote learning
• Training instances are searched for instance that most closely resembles 

new instance
• The instances themselves represent the knowledge
• Also called instance-based learning

• Similarity function defines what’s “learned”
• Instance-based learning is lazy learning
• Methods: nearest-neighbor, k-nearest-neighbor, …
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The distance function

• Simplest case: one numeric attribute
• Distance is the difference between the two attribute values involved (or a 

function thereof)

• Several numeric attributes: normally, Euclidean distance is used
and attributes are normalized

• Nominal attributes: distance is set to 1 if values are different, 0 if 
they are equal

• Are all attributes equally important?
• Weighting the attributes might be necessary

IRIS data clusters
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Learning prototypes

• Only those instances involved in a decision need to be stored
• Noisy instances should be filtered out

44

Rectangular generalizations

• Nearest-neighbor rule is used outside rectangles
• Rectangles are rules! (But they can be more conservative than 

“normal” rules.)
• Nested rectangles are rules with exceptions
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Representing clusters I

Simple 2-D representation

One cluster per example

Venn diagram

Multiple clusters per example
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Representing clusters II

1 2            3

a       0.4 0.1          0.5
b       0.1 0.8          0.1
c       0.3 0.3          0.4
d       0.1 0.1          0.8
e       0.4 0.2          0.4
f        0.1 0.4          0.5
g       0.7 0.2          0.1
h       0.5 0.4          0.1
…

Probabilistic assignment

Probability of belonging to 
each cluster

Dendrogram

Hierarchical clusters

NB: dendron is the Greek 
word for tree
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