Algorithms: The basic methods

Most of these slides (used with permission) are based on the book:

Data Mining: Practical Machine Learning Tools and Techniques
by I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal

Algorithms: The basic methods

* Inferring rudimentary rules

* Simple probabilistic modeling
* Constructing decision trees

* Constructing rules

* Association rule learning

* Linear models

* Clustering

Simplicity first

Simple algorithms often work very well!

There are many kinds of simple structure, e.g.:

One attribute does all the work

All attributes contribute equally & independently
Logical structure with a few attributes suitable for tree
A set of simple logical rules

Relationships between groups of attributes

A weighted linear combination of the attributes
Strong neighborhood relationships based on distance
Clusters of data in unlabeled data

Bags of instances that can be aggregated

Success of method depends on the domain

Inferring rudimentary rules

1R rule learner: learns a 1-level decision tree

A set of rules that all test one particular attribute that has been
identified as the one that yields the lowest classification error

Basic version for finding the rule set from a given
training set (assumes nominal attributes):

For each attribute
* Make one branch for each value of the attribute

* To each branch, assign the most frequent class value of the
instances pertaining to that branch

* Error rate: proportion of instances that do not belong to
the majority class of their corresponding branch

Choose attribute with lowest error rate

Pseudo-code for 1R

For each attribute,
For each value of the attribute, make a rule as follows:
count how often each class appears
find the most frequent class
make the rule assign that class to this attribute-value
Calculate the error rate of the rules
Choose the rules with the smallest error rate

* 1R’s handling of missing values: a missing value is
treated as a separate attribute value

Evaluating the weather attributes

QOutlook Temp Humidity ~Windy Play

Sunny Hot High False No Attribute Rules Errors Total
Sunny Hot High True No errors
Overcast Hot High False Yes Outlook sunny — No 2/5 4/14
Rainy Mild High False Yes Ov.ercast > Yes 0/4

Rainy Cool Normal False Yes Rainy — Yes 2/5

Rainy Cool Normal True No Temp Fot = No 2/4 /14
Overcast Cool Normal True Yes Mild = ves 2/6

Sunny Mild High False No o C(_)Ol o Yes 1/4

Sunny Cool Normal False Yes Humidity High > No 317 e
Rainy Mild Normal False Yes i Normal = es 7

Sunny Mild Normal True Yes Windy False - Yes 2/8 >4
Overcast Mild High True Yes True = No 3/6

Overcast Hot Normal False Yes

Rainy Mild High True No

Dealing with numeric attributes

* Idea: discretize numeric attributes into sub ranges (intervals)

* Discretization is the process of putting values into buckets so that there are a
limited number of possible states.

* How to divide each attribute’s overall range into intervals?
¢ Sortinstances according to attribute’s values
* Place breakpoints where (majority) class changes
* This minimizes the total classification error

* Example: temperature from weather data

64 65 68 69 70 71 72 72 75 75 80 81 83 85

Yes | No | Yes Yes Yes | No No Yes | Yes Yes | No | Yes Yes | No
Outlook Temperature Humidity Windy Play
Sunny 85 85 False No
Sunny 80 90 True No
Overcast 83 86 False Yes
Rainy 75 80 False Yes

The problem of overfitting

Discretization procedure is very sensitive to noise

* Asingle instance with an incorrect class label will probably produce a separate
interval

Simple solution:
enforce minimum number of instances in majority class per interval

Example: temperature attribute with required minimum number of instances in
majority class set to three:

64 65 68 69 70 71 72 72 75 75 80 81 83 85
Yes ® No PYes Yes Yes | No No Yes§ Yes Yes | No @ Yes Yes P No

64 65 68 69 70 71 72 72 75 75 80 81 83 85
Yes No Yes Yes Yes @ No No Yes Yes Yes | No Yes Yes No

Results with overfitting avoidance

* Resulting rule sets for the four attributes in the weather

data, with only two rules for the temperature attribute:

Attribute Rules Errors Total errors
Outlook Sunny — No 2/5 4/14
Overcast — Yes 0/4
Rainy — Yes 2/5
Temperature <775 — Yes 3/10 5/14
> 77.5 > No* 2/4
Humidity <82.5 > Yes 1/7 3/14
> 82.5and <95.5 - No 2/6
> 95.5 - Yes 0/1
Windy False — Yes 2/8 5/14
True — No* 3/6

Discussion of 1R

* 1R was described in a paper by Holte (1993):

Very Simple Classification Rules Perform Well on Most Commonly Used

Datasets

Robert C. Holte, Computer Science Department, University of Ottawa

* Contains an experimental evaluation on 16 datasets (using cross-

validation to estimate classification accuracy on fresh data)

* Required minimum number of instances in majority class was set to 6
after some experimentation

* 1R’s simple rules performed not much worse than much more complex

decision trees

* Lesson: simplicity first can pay off on practical datasets

* Note that 1R does not perform as well on more recent, more

sophisticated benchmark datasets

10

10

1R on weather data (hnumeric)

& Weka Explorer i [m] X

[Preprocess | Glassiiy | Cluster | Associate | Select atiibutes | Visualize | Auto-WEKA

Classifier
Choose | OneR-B &
Test options. Classifier output
® Use training set AT I
O Supplisd testset
O Cress-validation 7ol

(U Percentage split 6 6 outlook:

Test mode: evaluate on training data

== Classifier model (full training sec) —

sumy > mo
More options. overcast > yes
rainy > yes
(10/14 instances correct)
‘ (Nom) play ¥ I
i Time taken to build model: 0 ssconds
Result st (right-click for options) == Evaluation on training sec ==

| 21:24.05 - rules DecisionTable
| 212447 -rules DecisionTable
| 21:2504 -rules DecisionTasle
| 213223 -unctions LinearRe grassion

Time taken To test medel on training data: O seconds

=== Summary ==

| 212297 -tuncions SimpteLgistc cboasset IGC Bt niat Bty s
| 21:29:42 - functions. SimpleL ogistic Kappa statistic
| 21:43:09 - functions SimpleLagistic i:: ;::l\;::;:;ozmr
e o ||| e
| 21:51:35 - functions LinearRegression Total Number of Instances 14
| 22:33:06 - rules.OneR v
22:33:27 - rules OneR < T
Status
oK w P akd
11
11
Simple probabilistic modeling
* “Opposite” of 1R: use all the attributes
* Two assumptions: Attributes are
* equally important
» statistically independent (given the class value)
* This means knowing the value of one attribute tells us nothing
about the value of another takes on (if the class is known)
* Independence assumption is almost never correct!
L]

But ... this scheme often works surprisingly well in practice

The scheme is easy to implement in a program and very
fast

It is known as naive Bayes

12

12

Probabilities for weather data

Outlook Temperature Humidity Windy Play
Yes No Yes No Yes MNo Yes MNo |Yes MNo
Sunny 2 Hot 2 2 High 3 4 | False 6 2 9 5
Overcast Mild 2 Normal 6 True 3 3
Rainy 3 Cool 3 1
Sunny 2/9 3/5 | Hot 2/9 2/5 | High 3/9 4/5 | False 6/9 2/5 9/ 5/
Overcast ~ 4/9 0/5 [Mild 4/9 2/5 | Normal 6/9 1/5 | True 39 35| 14 14
Rainy 3/9 2/5 | Cool 3/9 1/5
Outlook Temp Humidity Windy Play
Sunny Hot High False No
Sunny Hot High True No
Overcast Hot High False Yes
Rainy Mild High False Yes
Rainy Cool Normal False Yes
Rainy Cool Normal True No
Overcast Cool Normal True Yes
Sunny Mild High False No
Sunny Cool Normal False Yes
Rainy Mild Normal False Yes
Sunny Mild Normal True Yes
Overcast Mild High True Yes
Overcast Hot Normal False Yes
Rainy Mild High True No
13
Probabilities for weather data
Outlook Temperature Humidity Windy Play
Yes No Yes No Yes No Yes MNo |Yes Mo
Sunny 2 Hot 2 High 3 4 | False 6 9 5
Overcast 4 Mild Normal 6 1 | True 3 3
Rainy 3 Cool 1
Sunny 2/9 3/5 | Hot 2/9 2/5 | High 3/9 4/5 | False 6/9 2/5| 9/ 5/
Overcast 4/9 0/5 [Mild 4/9 2/5 | Normal 6/9 1/5 | True 39 35| 14 14
Rainy 3/9 2/5 | Cool 3/9 1/5
e Anew day: Outlook Temp. Humidity =~ Windy Play
Sunny Cool High True ?

Likelihood of the two classes
For “yes” = 2/9 x 3/9 x 3/9 x 3/9 x 9/14 = 0.0053
For “no” = 3/5 x 1/5 x 4/5 x 3/5 x 5/14 = 0.0206
Conversion into a probability by normalization:
P(“yes”) = 0.0053 / (0.0053 + 0.0206) = 0.205
P(*no”) = 0.0206 / (0.0053 + 0.0206) = 0.795

14

14

Naive Bayes for classification

* Classification learning: what is the probability of the
class given an instance?

Evidence E = instance’s non-class attribute values

* Event H = class value of instance

* Naive assumption: evidence splits into parts (i.e.,
attributes) that are conditionally independent

* This means, given n attributes, we can write Bayes’ rule
using a product of per-attribute probabilities:

P(H|E)=P(E, | H)P(E; | H) * P(E, | H)P(H)/ P(E)

15

15

Weather data example

Outlook Temp. Humidity Windy Play
Sunny Cool High True ?

<€ Evidence E

P(yes | E)= P(Outlook = Sunny | yes)

P(Temperature = Cool | yes)
Probability of

. P(Humidity = High | yes)
class “yes

P(Windy = True| yes)
P(yes)/ P(E)

P(yes)/ P(E) :2/9x3/9><;/(z;<3/9x9/14

16

16

Missing values

* Training: instance is not included in frequency count for
attribute value-class combination

* C(lassification: attribute will be omitted from calculation

* Example:

Outlook Temp. Humidity = Windy Play
? Cool High True ?

Likelihood of “yes” = 3/9 x 3/9 x 3/9 x 9/14 = 0.0238
Likelihood of “no” = 1/5 x 4/5 x 3/5 x 5/14 = 0.0343
P("yes”) = 0.0238 / (0.0238 + 0.0343) = 41%

P("no”) = 0.0343 / (0.0238 + 0.0343) = 59%

17

17

-.L 68-95-99.7 Rule of bell curve

99.7% of the data are within

3 standard deviations of the mean
95% within
2 standard deviations
68% within
<— 1 standard —|
deviation
-
u—30 n—20 uw—ao u u+o u+20 u+ 30

18

Numeric attributes

* Usual assumption: attributes have a normal or Gaussian
probability distribution (given the class)

* The probability density function for the normal
distribution is defined by two parameters:

* Sample mean

S

e

* Standard deviation

N
et
i=1 /

Lt /
H= ﬁ;xu /

_Gmp?

* Then the density function f(x) is flx)= \/_cr B

For density function refer to: https://towardsdatascience.com/probability-concepts-
explained-probability-distributions-introduction-part-3-4a5db81858dc

In probability theory, a probability density function is a function whose value at
any given sample in the sample space can be interpreted as providing a relative
likelihood that the value of the random variable would equal that sample.

19

19
Statistics for weather data
Outlook Temperature Humidity Windy Play
Yes No Yes No Yes No Yes MNo Yes No
Sunny 2 64,68, 65,71, 65,70, 70,85, | False 6 2 9 5
Overcast 4 69, 70, 72,80, 70, 75, 90, 91, | True 3 3
Rainy 3 72, .. 85, .. 80, ... 95, ...
Sunny 2/9 3/5 w=73 u=75 u=79 1 =86 | False 6/9 2/5| 9/ 5/
Overcast 4/9 0/5 0=6.2 o=79 =102 0=9.7 |True 3/9 35| 14 14
Rainy 3/9 2/5
f() 1 _(x—.u)2
i . X) = 272
* Example density value: e
1 _(66-73)%
f(temperature = 66|yes) = ————e 2622 =(.0340
V276.2
20
20

10

Classifying a new day

* Anew day: Outlook Temp. Humidity Windy Play

Sunny 66 90 true ?

Likelihood of “yes” = 2/9 x 0.0340 x 0.0221 x 3/9 x 9/14 = 0.000036
Likelihood of “no” = 3/5 x 0.0221 x 0.0381 x 3/5 x 5/14 = 0.000108
P("yes”) = 0.000036 / (0.000036 + 0. 000108) = 25%
P("no”) = 0.000108 / (0.000036 + 0. 000108) = 75%

« Missing values during training are not included
21
© Weka Explorer i O X
[Preprocess [Ciassify | cluster | Associate | Setect atributes | visualize | Auto-weKa
Classifier
Choose [Nat
Testoptions Classifier output
@® Use training set e s e 3
r
O suppliedtestset Tire taken to test model on training data: 0 seconds
O Crosswalidation Folds 10 e s
() Percentage spii
Correctly Classified Instances 13 52,8571 %
Wore options. Incorrectly Classified Instances s 7.1429 %
Kappa statistic o.8372
|| ran absolute error 0.2796
(Nom} play || | oot mean squared erzor 0.3315
Relative absolute errox 50,2575 %
o e Root relative squared error es.1352 &
2 Total Namber of Instances 1
Resultlist(right-click foroptions)
) | === petaniea Accuracy By Class ==
21:24:47 - rules DecisionTable “I
e O R A A TERE 1P Rate [P Rate Prectsion Recall I-Measure MCC ROC Area PRC Area CL
1.000 0.200 0.500 1000 0.947 o.845 0.1 0.947 vl
21:32:23-functions LinearR:
el e 0,800 0.000 1.000 0.500 0,589 0.845 0.1 051 mo
213237 =GO Silplelogistic Welghted Avg. 0.525 0.125 0.53¢ 0.928 0.926 0.845 0.511 0.934
21:39:42- functions.SimpleLogistic
21:43:09 -functions.SimpleLogistic —— Confusion Matrix —=
214353 -trees.J4g
21:48:20 - functions LinearRegression : ‘; ' & clasditied a8
01 a=yes
21:61:35 - functions LinearRegression e
22:33.06- rules.OneR
22:33:27 - ules. OneR ﬁ
22:35:24 - bayes NaiveBayes E1S ¥
status S
T Lo | g <0

22

11

Naive Bayes: discussion

* Naive Bayes works surprisingly well even if independence
assumption is clearly violated

* Why? Because classification does not require accurate
probability estimates as long as maximum probability is
assigned to the correct class

* However: adding too many redundant attributes will cause
problems (e.g., identical attributes)

23

23

Constructing decision trees

* Strategy: top down learning using recursive divide-and-
conquer process

* First: select attribute for root node
Create branch for each possible attribute value

* Then: split instances into subsets
One for each branch extending from the node

* Finally: repeat recursively for each branch, using only instances that
reach the branch

» Stop if all instances have the same class

24

24

12

Rainy

Yes
Yes
Yes
No
No

Which attribute to select?

®)

Temperature

(A)
Sunny | Overcast
Yes
Yes ‘Y{es
es
No
N Yes
2 Yes
No
High \ Normal
Yes Yes
Yes Yes
Yes Yes
No Yes
No Yes
No Yes
No No

Cool
Yes Yes Yes
Yes Yes Yes
No Yes Yes
No No No
No
>
False \ True
Yes
Yes Yes
Yes Yes
Yes Yes
Yes No
Yes No
No No
No

25

25
Which attribute to select?
Sunny | Overcast \ Rainy ‘
Yes N Yes Ys
Yes Yes Yes Yes Yes
No v Yes Yes Yes
No Y:: No No ch\
No No No
© Humidity ®) @
High ormal alse | True
Yes Yes
Yes' Yes Yes es
Y, \ Yes Yes
o Yes Yes / Yes
No es Yes No
No Y No
No No o No
N\ No
26
26

13

Criterion for attribute selection

Which is the best attribute?
* Want to get the smallest tree

* Heuristic: choose the attribute that produces the “purest” nodes

Popular selection criterion: information gain

* Information gain increases with the average purity of the subsets

Strategy: amongst attributes available for splitting, choose
attribute that gives greatest information gain

Information gain requires measure of impurity

Impurity measure that it uses is the entropy of the class
distribution, which is a measure from information theory

27

27

Computing information

We have a probability distribution: the class distribution
in a subset of instances

The expected information required to determine an
outcome (i.e., class value), is the distribution’s entropy

Formula for computing the entropy:

Entropy(p1,p2, .. .pn) = — pilog p1 — p2log py... — pa log p,

Using base-2 logarithms, entropy gives the information
required in expected bits

Entropy is maximal when all classes are equally likely
and minimal when one of the classes has probability 1

28

28

14

A Fair Die Example

The Expected Value of a Random Variable or a Function of a Random Variable
Definition)
E(x): expected value of x, or E(x)=pn= Z.\-p(.\‘)

Example: The probability distribution of random variable x:

x 0 1 2
() 1/4 12 14 The formula for Shannon entropy is as follows,
Find E(x). Entropy(S) = ~ > pi log,
X 0 1 2 Total Thus, a fair six sided dice should have the entropy,
pe |14 12 U4 1 64§
— " Zlog, - = log,(6) = 2.5849...
xpi) |0 12 12 1=E(x) 26 %6

Example: Toss a die. x=number observed. Find p(x).
p(x)=1/6 forx=1,2,3,4,5,6.

Find E(x).
x 1 2 3 4 5 6 Total
) 16 16 16 16 16 16 1
xpl |16 2/6 3/6 46 5/6 66 21/6=3.5=E(x)

29

Example: attribute Outlook

* Outlook = Sunny :

Info([2, 3]) = 0.971 bits -0.4 * -1.32192809489 +-0.6 * -

0.736965594166 = 0.9709
¢ Qutlook = Overcast :

Info([4, 0]) = 0.0 bits 1*0+0*0=0
* Qutlook = Rainy :

Info([3, 2]) = 0.971 bits
-0.6 * -0.736965594166 + -0.4 * -
* Expected information for attribute: 1.32192809489 = 0.9709
Info([2,3],[4,0],[3,2]) = (5/14) X 0.971 + (4/14) X 0 + (5/14) X 0.971

= 0.693 bits

30

30

Computing information gain

* Information gain: information before splitting —
information after splitting
Gain(Outlook) =Info([9,5]) —info([2,3],[4,0],[3,2])

=0.940-0.693
=0.247 bits

* Information gain for attributes from weather data:

Gain(Outlook) =0.247 bits
Gain(Temperature) =0.029 bits
Gain(Humidity) =0.152 bits
Gain(Windy) = 0.048 bits

31

31
Continuing to split
Sunny Sunny
1
Hot | Mild Cool High Normal
No
No
No
Sunny
Gain(Temperature) =0.571 bits
Gain(Humidity) =0.971 bits
Gain(Windy) =0.020 bits
32
32

16

Final decision tree

Sunny | Overcast

High \ Normal

No Yes Yes No

* Note: not all leaves need to be pure; sometimes identical
instances have different classes

* Splitting stops when data cannot be split any further

33

33

Discussion

* Top-down induction of decision trees: ID3,
algorithm developed by Ross Quinlan

values, noisy data

* Similar approach: CART tree learner
* Uses Gini index rather than entropy to measure

impurity

(But little difference in accuracy of result)
Gini=1-Y"p*(c)
Entropy = Y, —p(ci)loga(p(c))

where p(c;) is the probability/percentage of class c¢; in a node.

* There are many other attribute selection criteria!

* (4.5 tree learner deals with numeric attributes, missing

34

34

17

WEKA — REPTree (one of the CART algorithms)

& Weka Explorer = [m] x

Preprocess | Classify | Cluster | Associate | Select atiibutes | Visualize | AutoWEKA

Classifier

Choose |REPTree -M2-v0.001-N3-51-L-1-10.0

Testoptions _ Classifierouput
(U Use training set [4]
=— stratified cross-validation ===
(O Supplied testset Set -— Summary —-
@ Cross-validation: Foids | 10 Correctly Classified Instances 141 54 i
) Puccentios =pit o 6 Incorrectly Classified Instances s & %
Kappa statistic 051
Hlore options. Mean absolute error 0.0563
Root mean smuared error 0.193¢
Relative absolute error 12,6749 ¢
‘ (Nom) dlass .J Root relative squared error 41,0559 %
{ Total Number of Instances 150

Start

Resultlit (roht-click for options)

=== Detailed Accuracy By Class ===

TP Rate FE Rate Precision Recall F-Measure
1.000 0.000 1.000 1.000 1.000
0.820 0.050 0.920 0.511
0,900 0.040 0.900 0,908

Weighted Avg. 0.940 0.030 0.%40 0.940 0.540

| 21:25:04 - ules DedisionTasle

| 21:32.23-functions LinearRegression
| 21:32:37 - functions.SimpleLogistic

i 21:39:42 - functions.SimpleLogistic

| 21:43.09 - functions.SimpleLogistic

| 214353 -trees 148

| 21:48:29 - functions LinearRegres sion

=== Confusion Matrix ===

a b c <= classified as

| 21:51:35 - functions LinearRegression 200 8 iBel dendriddcioed
| 046 4 | b = Iris-versicelor
| 223306 - rules.OneR
0 545 | ¢ = Iris-virginica
| 22:33:27-rules OneR
| 223524 - bayes NaveBayes =l
trees REPTree 1T -

oK Log

-

Covering algorithms

* (Can convert decision tree into a rule set
» Straightforward, but rule set overly complex

* More effective conversions are not trivial and may incur a lot of
computation

* Instead, we can generate rule set directly

* One approach: for each class in turn, find rule set that covers all
instances in it
(excluding instances not in the class)

* Called a covering approach:

* At each stage of the algorithm, a rule is identified that “covers”
some of the instances

36

Example: generating a rule

If true If x>1.2 andy > 2.6

then class = a then class = a

If x> 1.2
then class = a

¢ Possible rule set for class “b”:

If x < 1.2 then class = b
If x >1.2 and y < 2.6 then class = b

* Could add more rules, get “perfect” rule set

37

37

Rules vs. trees

* Corresponding decision tree: o X e
(produces exactly the same
predictions)

o

* But: rule sets can be more perspicuous (understandable)
when decision trees suffer from replicated subtrees

* Also: in multiclass situations, covering algorithm
concentrates on one class at a time whereas decision
tree learner takes all classes into account

38

38

19

Simple covering algorithm

Basic idea: generate a rule by adding tests that maximize the
rule’s accuracy

Similar to situation in decision trees: problem of selecting an
attribute to split on

* But: decision tree inducer maximizes overall purity

Each new test reduces

rule’s coverage:
Space of
- examples

_— Rule so far
Rule after

adding new
term

39

39

Selecting a test

* Goal: maximize accuracy
* t total number of instances covered by rule
* p positive examples of the class covered by rule
* t—p number of errors made by rule

* Select test that maximizes the ratio p/t

* We are finished when p/t = 1 or the set of instances
cannot be split any further

40

40

20

The contact lenses data

Age Spectacle prescription Astigmatism Tear production rate Recommended
lenses
Young Myope No Reduced None
Young Myope No Normal Soft
Young Myope Yes Reduced None
Young Myope Yes Normal Hard
Young Hypermetrope No Reduced None
Young Hypermetrope No Normal Soft
Young Hypermetrope Yes Reduced None
Young Hypermetrope Yes Normal hard
Pre-presbyopic Myope No Reduced None
Pre-presbyopic Myope No Normal Soft
Pre-presbyopic Myope Yes Reduced None
Pre-presbyopic Myope Yes Normal Hard
Pre-presbyopic Hypermetrope No Reduced None
Pre-presbyopic Hypermetrope No Normal Soft
Pre-presbyopic Hypermetrope Yes Reduced None
Pre-presbyopic Hypermetrope Yes Normal None
Presbyopic Myope No Reduced None
Presbyopic Myope No Normal None
Presbyopic Myope Yes Reduced None
Presbyopic Myope Yes Normal Hard
Presbyopic Hypermetrope No Reduced None
Presbyopic Hypermetrope No Normal Soft
Presbyopic Hypermetrope Yes Reduced None
Presbyopic Hypermetrope Yes Normal None

41

41
Example: contact lens data
. | k: If ?
Rule we seek: then recommendation = hard
* Possible tests:
Age = Young 2/8
Age = Pre-presbyopic 1/8
Age = Presbyopic 1/8
Spectacle prescription = Myope 3/12
Spectacle prescription = Hypermetrope 1/12
Astigmatism = no 0/12
Astigmatism = yes 4/12
Tear production rate = Reduced 0/12
Tear production rate = Normal 4/12
42
42

21

Modified rule and resulting data

* Rule with best test added:

If astigmatism = yes

then recommendation = hard

* Instances covered by modified rule:

Age Spectacle prescription Astigmatism Tear production Recommended
rate lenses
Young Myope Yes Reduced None
Young Myope Yes Normal Hard
Young Hypermetrope Yes Reduced None
Young Hypermetrope Yes Normal hard
Pre-presbyopic Myope Yes Reduced None
Pre-presbyopic Myope Yes Normal Hard
Pre-presbyopic Hypermetrope Yes Reduced None
Pre-presbyopic Hypermetrope Yes Normal None
Presbyopic Myope Yes Reduced None
Presbyopic Myope Yes Normal Hard
Presbyopic Hypermetrope Yes Reduced None
Presbyopic Hypermetrope Yes Normal None
43
43
Further refinement
If astigmatism = yes
* Current state: and ?
then recommendation = hard
* Possible tests:
Age = Young 2/4
Age = Pre-presbyopic 1/4
Age = Presbyopic 1/4
Spectacle prescription = Myope 3/6
Spectacle prescription = Hypermetrope 1/6
Tear production rate = Reduced 0/6
Tear production rate = Normal 4/6
44
44

22

¢ Rule with best test added:

If astigmatism = yes
and tear production rate = normal
then recommendation = hard

* Instances covered by modified rule:

Modified rule and resulting data

Age Spectacle prescription Astigmatism Tear production Recommended
rate lenses
Young Myope Yes Normal Hard
Young Hypermetrope Yes Normal hard
Pre-presbyopic ~ Myope Yes Normal Hard
Pre-presbyopic Hypermetrope Yes Normal None
Presbyopic Myope Yes Normal Hard
Presbyopic Hypermetrope Yes Normal None

45

45
Further refinement
. If astigmatism = yes
* Current state: and tear production rate = normal
and ?
then recommendation = hard
* Possible tests:
Age = Young 2/2
Age = Pre-presbyopic 1/2
Age = Presbyopic 1/2
Spectacle prescription = Myope 3/3
Spectacle prescription = Hypermetrope 1/3
* Tie between the first and the fourth test
* We choose the one with greater coverage
46
46

23

The final rule

If astigmatism = yes
Final rule: and tear production rate = normal
and spectacle prescription = myope
then recommendation = hard

Second rule for recommending “hard lenses”:
(built from instances not covered by first rule)

If age = young and astigmatism = yes
and tear production rate = normal
then recommendation = hard

These two rules cover all “hard lenses”:
* Process is repeated with other two classes

47

47
Pseudo-code for PRISM
For each class C
Initialize E to the instance set
While E contains instances in class C
Create a rule R with an empty left-hand side that predicts class C
Until R is perfect (or there are no more attributes to use) do
For each attribute A not mentioned in R, and each value v,
Consider adding the condition A = v to the left-hand side of R
Select A and v to maximize the accuracy p/t
(break ties by choosing the condition with the largest p)
Add A = v to R
Remove the instances covered by R from E
48
48

24

Installing PRISM in WEKA — Package Manager
SimpleEducationalLearningSchemes

© Package Manager s O X
Official i progress

|| Uninstai d I File/URL

Cache refresh completed

l Refresh repository cache H Install

(U Installed @) Available () Al |_| ignore dependencies/conflicts

Package | Category Installed version | Repository version Loaded
ensemblelibrary Ensemble leamning 1.06
cationalLeami ne Classi 104

& ﬁ Package search -ducationallLearningSchemes | Clear | (Search hits: 2)

‘,sima[eEducatinna]LearninuScheml:SLSinlnle.Jeaminu_ichemesf_or_educatinnalnumusgi![‘risnl.,l.d3.,[Bljmd,4u_

& Weka Explorer = [m] X
Preprocess | Classify | Cluster | Associate | Selectatributes | Visualize | Auto-WEKA |
Classifier
e
| choose |prism
Test options Classifier output
() Use training set Sl s s i
=== Summary === r
() Supplied test set
® Correctly Classified Instances 13 54.1667 %
S i Kl Incorrectly Classified Instances 7 26.1667 &
O Percentagesplt % 56 Keppa statistic 0.3204
= Mean absolute error 0.2333
More options. Root mean squared error 0.483
Relative absolute error 75.7098 %
Root relative squared erzor 123.703€ %
{ (Nom) contactienses FJ UnClassified Instances 4 16.6667 &
Total Number of Instances 24
Start Stop
=== Detailed Rccuracy By Class =—=
Result it (right-click for options)
TP Rate TP Rate Precision Recall T-Measure MCC ROC Area PRC Area Cl
8:48 - rules Prism 0.500 0.125 0.500 0.500 0.500 0.375 0.647 0.325 S0,
0.333 0.118 9.333 0.333 0.333 0.216 0.575 0.208 ha.
0.769 0.429 0.76% 0.769 0.78% 0.341 0.867 0.721 nory
Weighted Avg. 0.650 0.321 0.650 0.850 0.650 0.329 0.64% 0.565
=== Confusion Matriz ===
a b c «<-- classified as
2 1 1| as=soft
01 2| b hard
2 110 | c=none
ELS T
Status
| 9| g <0
oK

50

25

Separate and conquer rule learning

Rule learning methods like the one PRISM employs (for
each class) are called separate-and-conquer algorithms:
* First, identify a useful rule

* Then, separate out all the instances it covers

* Finally, “conquer” the remaining instances

Difference to divide-and-conquer methods:

* Subset covered by a rule does not need to be explored any
further

51

51
Mining association rules
Naive method for finding association rules:
* Use separate-and-conquer method
* Treat every possible combination of attribute values as a
separate class
Two problems:
* Computational complexity
* Resulting number of rules (which would have to be pruned on
the basis of support and confidence)
It turns out that we can look for association rules with
high support and accuracy directly
52
52

26

ltem sets: the basis for finding rules

* Support: number of instances correctly covered by
association rule

* The same as the number of instances covered by all tests in the rule
(LHS and RHS!)

* [tem: one test/attribute-value pair
* [tem set : all items occurring in a rule

* Goal: find only rules that exceed pre-defined support

* Do it by finding all item sets with the given minimum support and
generating rules from them!

53

53
Weather data
Outlook Temp Humidity Windy Play
Sunny Hot High False No
Sunny Hot High True No
Overcast Hot High False Yes
Rainy Mild High False Yes
Rainy Cool Normal False Yes
Rainy Cool Normal True No
Overcast Cool Normal True Yes
Sunny Mild High False No
Sunny Cool Normal False Yes
Rainy Mild Normal False Yes
Sunny Mild Normal True Yes
Overcast Mild High True Yes
Overcast Hot Normal False Yes
Rainy Mild High True No
54
54

27

ltem sets for weather data

One-item sets Two-item sets Three-item sets Four-item sets
Outlook = Sunny (5) Outlook = Sunny Outlook = Sunny Outlook = Sunny
Temperature = Hot (2) Temperature = Hot Temperature = Hot
Humidity = High (2) Humidity = High
Play = No (2)
Temperature = Cool (4) Outlook = Sunny Outlook = Sunny Outlook = Rainy
Humidity = High (3) Humidity = High Temperature = Mild
Windy = False (2) Windy = False
Play = Yes (2)

* Total number of item sets with a minimum support of at
least two instances: 12 one-item sets, 47 two-item sets, 39
three-item sets, 6 four-item sets and O five-item sets

55

55

Generating rules from an item set

* Once all item sets with the required minimum support have
been generated, we can turn them into rules

* Example 4-item set with a support of 4 instances:
Humidity = Normal, Windy = False, Play = Yes (4)

* Seven (2N-1) potential rules:

If Humidity = Normal and Windy = False then Play = Yes 4/4
If Humidity = Normal and Play = Yes then Windy = False 4/6
If Windy = False and Play = Yes then Humidity = Normal 4/6
If Humidity = Normal then Windy = False and Play = Yes 4/17
If Windy = False then Humidity = Normal and Play = Yes 4/8
If Play = Yes then Humidity = Normal and Windy = False 4/9

If True then Humidity = Normal and Windy = False
and Play = Yes 4/12

56

56

28

Rules for weather data

* All rules with support > 1 and confidence = 100%:

Association rule Sup. Conf.
1 Humidity=Normal Windy=False = Play=Yes 4 100%
2 Temperature=Cool = Humidity=Normal 4 100%
3 Outlook=Overcast = Play=Yes 4 100%
4 Temperature=Cold Play=Yes = Humidity=Normal 3 100%
58 Outlook=Sunny Temperature=Hot = Humidity=High 2 100%
* Intotal:
3 rules with support four
5 with support three
50 with support two
57
57
Example rules from the same item set
* Item set:
Temperature = Cool, Humidity = Normal, Windy = False, Play = Yes (2)
* Resulting rules (all with 100% confidence):
Temperature = Cool, Windy = False = Humidity = Normal, Play = Yes
Temperature = Cool, Windy = False, Humidity = Normal = Play = Yes
Temperature = Cool, Windy = False, Play = Yes => Humidity = Normal
* We can establish their confidence due to the following
“frequent” item sets:
Temperature = Cool, Windy = False (2)
Temperature = Cool, Humidity = Normal, Windy = False (2)
Temperature = Cool, Windy = False, Play = Yes (2)
58
58

29

Weka Class Association Rules

Qv

2 Explorer

Freprocess| Classify| Cluster Associate | Select attributes| Visualize | Auto-WEKA | Forecast|
Associator

N10-T0-COB-D005-U10-MD1-5-10-A-C

e Associator output

s

Rasit st (el 1| T ifermaeion =

play
=== Asscctator model (full treining set)

1 tnstances)
dences: 0.5
Husber of cycles performed: 18

Generated sets of large itessets:

Size of set of large itemsets L{l): 17

Size of set of large itemsets Li2): 27

Size of set of large ivemsers L(3): €

Best rules found:

1. outlookeovercast 4 ==> play=yes 4
2. PumidiTy=RormAl Windy=FALSE ¢ ==> pla
3. outlookesunny humidicyshigh 3 =e> pl
4. outlook=rainy windy=FALSE 3 ==> play=:
outlookesunny bumidicy=normal 2 we>

outlook=overcast humidity=high 2 ==>
. outlook=overcast humidity=normel 2 =:
outleob-overcast windy-TRUE 2 ==> pla

Schese: weka.associations.Apriori -if 10 =T 0 <C 0.8 =D 0.05 -U £.0
122:31:25 - Aprior Belation: weather. sysbolic

B

outtook
remperamurs
hamidicy
vinay

weks.associations.Apriori
About

@ weka.gui.GenericObjectEditor

Class implementing an Apriori-ype algorhm

aar [True

dassindex [5

deita [0.05

doNotCheckCapabilties. [False

lowerBoundMinSupport [0,

metricType [Confidence

minMetric

o3

numRules [10

outputkemsets [Faise

removeAliMissingCois. [False

conf: (1) significanceLevel [-1.0

yeyes 4

a3 treatZeroAsMissing [False

xewd upperBoundMinSupport [1.0
e verbase [Folse
> play=yes

Flayeyes 2

> playayes 2

open.. | Save.

Cancel

y-yes 2

Status
oK

Log ‘xu

59

Weka Class Association Rules

Preprocess| Clossify| Cluster Associate | Select aftributes| visuskize |
Associator

AutorWEKA | Forecost|

Mintmm suppore: 0.05 (231 tnsrances)]
JRrp—— 0.9

Busber of cycles performed: 13
Generated sets of large itemsets:

six.

set of largs demsecs L(1):
Size of set of large remsets L(2): 1

e aremsers L(3): 4

st dsemsets L(4): 3
Saze of set of large iremsets L(s5): 1

Large izemsecs L(é

<y

Large 1zemsets L(T): 3|

set of Large dtemsers L(3): 4

Stze of set of large izemsets L($

: 1
Best rules founa:
1. bresd snd cake=: juice-sas-cord-n

2. baring needsw: sauces-gravy-ples|
3. bread and catest sauces-gravy-pkll
3

Apiioritype sigorthm. Wors
Copebiliues

wlm 3
N —
B
doNotCheckCopabilies [False <]
N
maciype [cobomncs 3]
Je——
oumRules [0
ovpumenses [=]
S = |
signficancelevel [100
O ™ |
-
e I |

| swe. | o | o

Tt covmey taunnEy pesares tisswes-paper prow 162 ==
fxozen foodaet

Choose |Apriori 441070 0.9-0 0.05-U 1.0-M 005 5 -1.0-4 £ 217
Associator output
Feseiberear T
fiiat of axeribuces casceed]
es Asscciazor moa 1 craining ser
@ weka.gui GenericObjectEditor X ‘

[22:31:41 - Aprori
l22:34:11 - Apriori Aoria weka.associations. Apriort

#=> totalenigh 238 conf: (0.83)
enigh

Bitet vegetableset 253 w5 toralonigh 235 cont: (0.
vegetanless 252 ==> Soral-h:

Bea-peper prd=t tru:
251 => cotalehigh 233
E 250 ==> cotalshign 232
coral=nigh

prdet chessest masgarinest 256 == total

conts (0.83)
cont: (0.93)
53

Status
oK

60

30

Generating item sets efficiently

* How can we efficiently find all frequent item sets?
* Finding one-item sets easy

* |dea: use one-item sets to generate two-item sets, two-item sets
to generate three-item sets, ...

* If (A B)is a frequent item set, then (A) and (B) have to be frequent item sets
as well!

* In general: if X is a frequent k-item set, then all (k-1)-item subsets of X are
also frequent

* Compute k-item sets by merging (k-1)-item sets

61

61
Example
* Given: five frequent three-item sets
(ABC),(ABD),(ACD), (ACE), (BCD)
* Lexicographically ordered!
* Candidate four-item sets:
(ABCD) OK because of (ACD) (BCD) (ABC)
(ACDE) Not OK because of (C D E)
* To establish that these item sets are really frequent, we
need to perform a final check by counting instances
* For fast look-up, the (k —1)-item sets are stored in a
hash table
62
62

31

Algorithm for finding item sets

Set k to 1
Find all k-item sets with sufficient coverage and store them in hash table #1
While some k-item sets with sufficient coverage have been found

Increment k

Find all pairs of (k-1)-item sets in hash table #(k-1) that differ only in
their last item

Create a k-item set for each pair by combining the two (k-1)-item sets
that are paired

Remove all k-item sets containing any (k-1)-item sets that are not in the
#(k-1)hash table

Scan the data and remove all remaining k-item sets that do not have
sufficient coverage

Store the remaining k-item sets and their coverage in hash table #k,
sorting items in lexical order

63

63

Association rules: discussion

* Above method makes one pass through the data for each
different item set size

* Another possibility: generate (k+2)-item sets just after (k+1)-item
sets have been generated

* Result: more candidate (k+2)-item sets than necessary will be
generated but this requires less passes through the data

* Makes sense if data too large for main memory

* Practical issue: support level for generating a certain
minimum number of rules for a particular dataset

* This can be done by running the whole algorithm
multiple times with different minimum support levels

* Support level is decreased until a sufficient number of
rules has been found

64

64

32

Linear models: linear regression

* Work most naturally with numeric attributes

* Standard technique for numeric prediction

e Qutcome is linear combination of attributes

xX=wpt+wia; +waaz + - + wrag
* Weights are calculated from the training data

* Predicted value for first training instance al!)

k
woag) + wla(lll + wza(zl) + et wkagcl) = Z wjafl)
=0

(assuming each instance is extended with a constant attribute with value 1)

65

65

Minimizing the squared error

* Choose k +1 coefficients to minimize the squared error on
the training data

k 2
e Squared error: Z (x(-')_ ija]‘."))
=0

i=1

* Coefficients can be derived using standard matrix operations

* Can be done if there are more instances than attributes
(roughly speaking)

* Minimizing the absolute error is more difficult

An example: http://faculty.cas.usf.edu/mbrannick/regression/Part3/Reg2.html

66

66

33

Classification

* Any regression technique can be used for classification

* Training: perform a regression for each class, setting the outputto 1
for training instances that belong to class, and O for those that don’t

* Prediction: predict class corresponding to model with largest output
value (membership value)

* For linear regression this method is also known as multi-

response linear regression

* Problem: membership values are not in the [0,1] range.

* Membership values can fall outside range

* So they cannot be considered proper probability estimates

* |n practice, they are often simply clipped into the [0,1]
range and normalized to sum to 1

67

67
Linear models: logistic regression
* Can we do better than using linear regression for
classification?
* Yes, we can, by applying logistic regression
* Logistic regression builds a linear model for a transformed
target variable
* Assume we have two classes
* Logistic regression replaces the target (probability)
Prllay,az,. . ., ak
by this target (odds)
log[Pr[1]ay, az, . .., ax) /(1 — Pr[1|ay,aa, . . ., ax])
* This logit transformation maps [0,1] to (-, +0), i.e., the new
target values are no longer restricted to the [0,1] interval
68

34

TABLE 3.1: Current Use of Contraception Among Married Women
by Age, Education and Desire for More Children

Logistic regression explained

Fiji Fertility Survey, 1975

Desires More Contraceptive Use

Age Education Children? o Yes Total
<25 Lower Yes 53 6 59
No 10 4 14

Upper Yes 212 52 264

No 50 10 60

2529 Lower Yes 60 14 74
No 19 10 29

Upper Yes 155 54 209

No 65 27 92

30-39 Lower Yes 112 33 145
No (] 80 157

Upper Yes 118 46 164

No 68 78 146

40-49 Lower Yes 35 6 41
No 46 48 94

Upper Yes 8 8 16

No 12 31 43

Total 1100 507 1607

In the contraceptive use data
there are 507 users of
contraception among 1607
women.

So we estimate the probability as
507/1607 = 0.316.

The odds are 507/1100 or 0.461 to
one, so non-users outnumber
users roughly two to one.

The logit is log(0.461) = -0.775.

See for details: https://data.princeton.edu/wws509/notes/c3.pdf

69
Logit transformation
* Resulting class probability model:
Pr[l|ay,az,...,a] = 1/(1 +exp(— wo — wia; — -+ — wxay))
70

35

Example logistic regression model

* Model with w, =-1.25 and w, = 0.5:

1k

0.8

0.6
0.4

02

0 .

-10 -5 0 &) 10

* Parameters are found from training data using maximum
likelihood

71

71

Linearly separable data

* A dataset is said to be linearly separable if it is possible to draw a line that

can separate points belonging to different classes from each other.

Dataset: N=200, '0": 0.5 '1: 0.5

Failing / § g W

* Linearly non-separable data:

3 x

X Oooo

X X o ©O

x X

X

© X

0 X x

® Class

L% X xX

Illustrative figures taken from:
https://www.commonlounge.com/discussion/6caf49570d9c4d0789afbc544b32cdbf

72

72

36

Linearly separable data

* A dataset is said to be linearly separable if it is possible to draw a line that
can separate points belonging to different classes from each other.

Dataset: N=200, '0": 0.5 '1": 0.5

Algebraic definition:

* Algebraically, the separator is a linear function, i.e. if data point x is given by
(x1, x2), when the separator is a function f(x) = w1*x1 + w2*x2 + b

* All points for which f(x) = 0, are on the separator line. All points for which f(x) >
0 are on one side of the line, and all points for which f(x) < 0 are on the other
side.

Illustrative figures taken from:
https://www.commonlounge.com/discussion/6caf49570d9c4d0789afbc544b32cdbf -,

73
Linear models are hyperplanes
* Decision boundary for two-class logistic regression is where
probability equals 0.5:
Pr(1lay,az,...,ar] = 1/(1 + exp(—wy — wia; — -+ — wiar)) = 0.5
which occurs when —wg—wia; — - —wiay = 0.
* Thus logistic regression can only separate data that can be
separated by a hyperplane
74

37

Linear models: the perceptron

* Observation: we do not actually need probability estimates if
all we want to do is classification

* Different approach: learn separating hyperplane directly
* Let us assume the data is linearly separable

* In that case there is a simple algorithm for learning a
separating hyperplane called the perceptron learning rule

* Hyperplane: woap +wia) +waay + - +wia, =0
where we again assume that there is a constant attribute with
value 1 (bias)

* If the weighted sum is greater than zero we predict the first
class, otherwise the second class

75

75

Perceptron as a neural network

Output
layer

1 Attribute Attribute oo @ Attribute
("Bias") ap as ay

Input
layer

Positive Examples

©o On this side:
o © dot(x, w) +b >0
O o

7. Weight vector
X x X ¥ that defines

Negative example the hyperplane
On this side:

dof(x, w)+b <0 Hyperplane perpendicular to w

¢ H = {x : dot(x, w) + b = 0}

76

76

38

The algorithm

Set all weights to zero
Until all instances in the training data are classified correctly
For each instance I in the training data
If I is classified incorrectly by the perceptron
If I belongs to the first class add it to the weight vector
else subtract it from the weight vector

Algorithm: Perceptron Learning Algorithm If there are two vectors of

P« inputs with label 1; size n+1, w and x, the dot product of these
N « inputs with label 0 vectors (w.x) could be computed as follows:
Initialize w randomly;
while lconvergence do

W = [Wg, Wi, Way .. W]

Pick random x € PUN ; X = [1'. L1y L2y eary .?3?1]
if xe P and w.x <0 then n

[w=w+x: W-X:WTX:Z!UI‘*
end o

ifxe N and w.x>0then
! W=w-—X;
end
end
//the algorithm converges when all the
inputs are classified correctly

77

Multilayer Perceptron as a neural network — IRIS dataset

@ Weka Explorer = [} X
Preprocess | Glassity | Cluster | Associate | Selectatbutes | visualize | Auto-WEKA |
Classifier
1 i
| enoose || ptron -L 0.3 -M 0.2-N600-VD-§ 0-E20-Ha
Test options. Classifier output
() Use fraining set i
=== Stratified cross-validation === r
() Suppliedtest set === Summary ===
® Crossvalidation Folds 10 Correctly Classified Instances 145 97.3333 %
() Percentage spiit 6 66 Incorrectly Classified Instances 4 2.6667 %
Kappa statistic 0.96
More options. Mean abselute error 0.0327
RoOL mean squared error 0.1291
Relative absolute error 7.3555 %
{ (Nom) class VJ Root relative squared error 27.3796 %
Total Number of Instances 150
start stop
=== Detailed Accuracy By Class ===
Result list (right-click for options)
TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Cl
23:38:48 - rules Prism 1.000 0.000 1.000 1.000 1.000 1.000 1.000 Iri
23:39'59 - rules M5Rules 0.960 0.020 0.%60 0.860 0.%40 0.8%6 0.593 Iri
23:40:04 - rules PART 0.960 0.020 0.960 0 0.940 0.9%6 0.893 Ik
W = B .0) 0. . 96 0.998 0.
00:28:05 - funclions.MultilayerPerceptron e Tt R e SRR L =
0 PETETRRel | | | —— confuston Maveix ——
a b c <-- classified as
50 0 0| a=Iris-setosa
048 2| b = Iris-versicolor
0 248 | c=Iris-virginica
i
i >
Status
Log x0
oK -

78

39

Clustering

* Clustering techniques apply when there is no class to be
predicted: they perform unsupervised learning

* Aim: divide instances into “natural” groups

* As we have seen, clusters can be:
* disjoint vs. overlapping
* deterministic vs. probabilistic
* flat vs. hierarchical

* We will look at a classic clustering algorithm called k-means
* k-means clusters are disjoint, deterministic, and flat

0123 45

7 N ! = > 2 Point P1 = (1,1)
Euclidian distance formula: Bonc(2,9) = [(@ — 90)

r
al
3

1

1

=

VA WN RO

__4——=P0In\l)2:(54)

-
I \ i n distance = - 24 - 2 =

Manhattan distance formula: doo(z,2) = 5 [(2 —) Euckdoandlorco=: /(S (+1)" =5
=1 Manhattan distance = 5-1] + [4-1] =7

79

79

The k-means algorithm

* Step 1: Choose k random cluster centers

* Step 2: Assign each instance to its closest cluster center based on
Euclidean distance

* Step 3: Recompute cluster centers by computing the average
(aka centroid) of the instances pertaining to each cluster

* Step 4: If cluster centers have moved, go back to Step 2

* This algorithm minimizes the squared Euclidean distance of the
instances from their corresponding cluster centers
* Determines a solution that achieves a local minimum of the squared
Euclidean distance

* Equivalent termination criterion: stop when assignment of
instances to cluster centers has not changed

80

80

40

The k-means algorithm: example

Initial step Step 1 Step 2 Final step
F ¥ + +
o+ T e it ot +$+ o+ Ta
+ o H 1 . - + + e
5] A -
+ " - +
+ e + +
+ + + +
CPOO P Pe, O CPGO A g\ C%o I
o e “» o N o o) A
o A &
O O O
A O 0 0
O O | O
N O o & O &]

81

81

Discussion

* Algorithm minimizes squared distance to cluster centers
* Result can vary significantly

* based on initial choice of seeds
* Can get trapped in local minimum

* Example:
P initial cluster

centres

Y
e
instances

N

[J (
* To increase chance of finding global optimum: restart with
different random seeds

* Can be applied recursively with k=2

82

82

41

Hierarchical clustering

* Bisecting k-means performs hierarchical clustering in a top-down
manner

* Standard hierarchical clustering performs clustering in a bottom-
up manner; it performs agglomerative clustering:
* First, make each instance in the dataset into a trivial mini-cluster
* Then, find the two closest clusters and merge them; repeat
* Clustering stops when all clusters have been merged into a single cluster

* Qutcome is determined by the distance function that is used:

* Single-linkage clustering: distance of two clusters is measured by finding
the two closest instances, one from each cluster, and taking their distance

* Complete-linkage clustering: use the two most distant instances instead
* Average-linkage clustering: take average distance between all instances
* Centroid-linkage clustering: take distance of cluster centroids

* Group-average clustering: take average distance in merged clusters

* Ward’s method: optimize k-means criterion (i.e., squared distance)

83

Example: hierarchical clustering
.
o _
= 4] L —_.]
o
o
<
(=]
©
S
o _
o
e |7§|
22ES8STTEET TR P8 E522388885S583
PE Vs 038822323 8= 2% 32 PR
EpSTSpoon E5BS8ES58=3230 2 e8Zawdy
Z8SESTunn 5, 00F 008 8 naiie st
58T 88 8 cPEESGSEog 280085807
ol CEEEs s Mmoo mo8 g >0 8I—-2S5ac
EEpERBg S e ol 00T 500832 5,882 =0
5 &0 = 3. - % 0-2828% %088 gag »2
8o DL EYBYY 8ol E0; oGP S0E
¢ <=ELfElLs 080008 P05 505cEED
firg 50558585 <,6 258830802854
7] gE.s.s.E.s aag_m =4 25 :ﬁ@g
= £ESuagag Ssg3 Eo-® EE - g
< CL2806 JF £82= &= s O
22200 4 83 o ®F
Do poxxX o @ £ %
ESo83 = 5 2%
%H'ELLLL § W Fo
E L
84

42

Hierarchical Clustering Demo

* Open glass.arff.

* Normalize numeric attributes.

* Data normalization is the process of rescaling one or more
attributes to the range of 0 (smallest) to 1 (largest).

* Normalization is a good technique to use when features have
different ranges.

* E.g. age ranges from 0—-100, income ranges from 0 - 20 mn or
higher. Due to larger values, income will influence the result.

* You can normalize all of the attributes in your dataset with
Weka by choosing the Normalize filter and applying it to your
dataset.

* Filter -> unsupervised -> attribute -> normalize.

85
© Weka Explorer -] %
Preprocess | Classify| Cluster| Associate | Select attributes| Visualize | Auto-WEKA| Forecast|

openfie.. | openWRL.. | openps.. | Generate... | undo Edit... | Save... |
Filter
Choose |Normalize -5 1.0-T 0.0 Apply
Currert relation Selected attribute
Relation: Glass-weka filters.unsupervised.attribute.No... Aftributes: 10 Name: Na Type: Numeric
Instances: 214 Sum of weights: 214 Missing: 0 (0%) Distinct: 142 Unique: 97 (45%)
Attributes Statistic Value
inimum
All | None | Invert | pattern | || aodmurn
jean 1403
[mo. [Name || |[stdoev 123
1R
Mg
Al
rsi
K
Fca
8/ |Ba
9 Fe
10/ Type Class: Type (Nom) v | visualize Al
o
3
—! [S
' 1
Status
oK Log - 0
86

43

Hierarchical Clustering Demo

© Weka Explorer

Preprocess| Classify Cluster | Associate| Select attributes| Visuslize | Auto-WEKA | Forecast|

Clustersr
Choase ||HierarchicalChisterer N6 -L SINGLE -A "wieka core FurlideanDistance R first-last”
Cluster mode Clusterer output

& Use training set

 Supplied test set

" Percentage splt @ weka.guiGenericObjectEditor X ‘
 Classes to dusters evaluati
St weka.clusterers. HierarchicalClusterer
(Hom) Type -
= r About
¥ Store clusters for visualization
Higrarchical clustefing cass. Mora
Ignore attributes e
Start debug [False
Result list (right-dick for options) !

_ Choose frst-last
distancelsBranchiength [False ~]
doNotCheckCapabilities |False =]

linkType [SPIGLE =]
numClusters |6

printhewick |True =

open.. | sove.. oK concel |

Status

oK Log ‘ x0

87
Hi hical Clustering D
@ Weka Explorer - X
Preprocess| Classify Cluster | Associate| Select oitributes| Visualize | Auto-WEKA| Forecast|
Clusterer
Choose ll-ﬁarmﬁmﬁniw N6 -L SINGLE -P -A "weeka core FuclideanDistance -R first-last*
Cluster mode Clusterer output
£ Use training set Clustered Instances
 Supplied tast sat o 208 ¢ &)] e ————
 Percentage split % [e6 < j : :::
& (lasses to clusters evaluation 3 1 0w
4 1(owm
Nom) T
(o) Type s 2(1w
% Store clusters for visualization
Ignare attributes
Start |
— assigned to cluster
Result list (right-click for options) build wind float
[08:04:52 - HierarchicalClusterer build vind non-float poesrun el 1
vehic wind float
vehic wind non-float
containers
tablew:
headlanps
- build wind non-£]
— Ho class
-~ Tableware
~ Fe class
— headlamps
Cluster § <-- containers
orrectly clustered instances @ 135.0 €3.024L %
Status
oK log | g %0
88

88

44

Some final comments on the basic methods

* Bayes’ rule stems from his “Essay towards solving a problem
in the doctrine of chances” (1763)

» Difficult bit in general: estimating prior probabilities (easy in the case
of naive Bayes)

* Extension of naive Bayes: Bayesian networks

* The algorithm for association rules we discussed is called
APRIORI; many other algorithms exist
* Minsky and Papert (1969) showed that linear classifiers have
limitations, e.g., can’t learn a logical XOR of two attributes
* But: combinations of them can (this yields multi-layer neural nets)

89

45

