Algorithms: The basic methods

Most of these slides (used with permission) are based on the book:

Data Mining: Practical Machine Learning Tools and Techniques
by I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal

1

Algorithms: The basic methods

- Inferring rudimentary rules
- Simple probabilistic modeling
- Constructing decision trees
- Constructing rules
- Association rule learning
- Linear models
- Clustering

Simplicity first

- Simple algorithms often work very well!
- There are many kinds of simple structure, e.g.:
- One attribute does all the work
- All attributes contribute equally \& independently
- Logical structure with a few attributes suitable for tree
- A set of simple logical rules
- Relationships between groups of attributes
- A weighted linear combination of the attributes
- Strong neighborhood relationships based on distance
- Clusters of data in unlabeled data
- Bags of instances that can be aggregated
- Success of method depends on the domain

Inferring rudimentary rules

- 1R rule learner: learns a 1-level decision tree
- A set of rules that all test one particular attribute that has been identified as the one that yields the lowest classification error
- Basic version for finding the rule set from a given training set (assumes nominal attributes):
- For each attribute
- Make one branch for each value of the attribute
- To each branch, assign the most frequent class value of the instances pertaining to that branch
- Error rate: proportion of instances that do not belong to the majority class of their corresponding branch
- Choose attribute with lowest error rate

Pseudo-code for 1R

```
For each attribute,
For each value of the attribute, make a rule as follows:
    count how often each class appears
    find the most frequent class
    make the rule assign that class to this attribute-value
Calculate the error rate of the rules
Choose the rules with the smallest error rate
```

- 1R's handling of missing values: a missing value is treated as a separate attribute value

Evaluating the weather attributes

Outlook	Temp	Humidity	Windy	Play				
Sunny	Hot	High	False	No	Attribute	Rules	Errors	Total errors
Sunny	Hot	High	True	No				
Overcast	Hot	High	False	Yes	Outlook	Sunny \rightarrow No	2/5	4/14
Rainy	Mild	High	False	Yes		Overcast \rightarrow Yes	0/4	
Rainy	Cool	Normal	False	Yes		Rainy \rightarrow Yes	2/5	
Rainy	Cool	Normal	True	No	Temp	Hot \rightarrow No	2/4	5/14
Overcast	Cool	Normal	True	Yes		Mild \rightarrow Yes	2/6	
Sunny	Mild	High	False	No		Cool \rightarrow Yes	1/4	
Sunny	Cool	Normal	False	Yes	Humidity	High \rightarrow No	3/7	4/14
Rainy	Mild	Normal	False	Yes		Normal \rightarrow Yes	1/7	
Sunny	Mild	Normal	True	Yes	Windy	False \rightarrow Yes	2/8	5/14
Overcast	Mild	High	True	Yes		True \rightarrow No	3/6	
Overcast	Hot	Normal	False	Yes				
Rainy	Mild	High	True	No				

Dealing with numeric attributes

- Idea: discretize numeric attributes into sub ranges (intervals)
- Discretization is the process of putting values into buckets so that there are a limited number of possible states.
- How to divide each attribute's overall range into intervals?
- Sort instances according to attribute's values
- Place breakpoints where (majority) class changes
- This minimizes the total classification error
- Example: temperature from weather data

64	65	68	69	70	71	72	72	75	75	80	81	83
Yes	No	Yes	Ye	Ye	No	No	Yes	Ye	Yes	No	Yes	Yes

Outlook	Temperature	Humidity	Windy	Play
Sunny	85	85	False	No
Sunny	80	90	True	No
Overcast	83	86	False	Yes
Rainy	75	80	False	Yes
\ldots	\ldots	\ldots	\ldots	\ldots

The problem of overfitting

- Discretization procedure is very sensitive to noise
- A single instance with an incorrect class label will probably produce a separate interval
- Simple solution: enforce minimum number of instances in majority class per interval
- Example: temperature attribute with required minimum number of instances in majority class set to three:

64	65	68	69	70	71	72	72	75	75	80	81	83		85
Yes	(1) No	Q Yes	Yes	Yes	No	No	Yes	Yes	Yes	No	Yes	Yes	(a)	No
64	65	68	69	70	71	72	72	75	75	80	81	83		85
Yes	No	Yes	Yes	Yes	No	No	Yes	Yes	Yes	No	Yes	Yes		

Results with overfitting avoidance

- Resulting rule sets for the four attributes in the weather data, with only two rules for the temperature attribute:

Attribute	Rules	Errors	Total errors
Outlook	Sunny \rightarrow No	$2 / 5$	$4 / 14$
	Overcast \rightarrow Yes	$0 / 4$	
	Rainy \rightarrow Yes	$2 / 5$	
	$\leq 77.5 \rightarrow$ Yes	$3 / 10$	$5 / 14$
Temperature	$>77.5 \rightarrow$ No*	$2 / 4$	
	$\leq 82.5 \rightarrow$ Yes	$1 / 7$	$3 / 14$
Humidity	>82.5 and $\leq 95.5 \rightarrow$ No	$2 / 6$	
	$>95.5 \rightarrow$ Yes	$0 / 1$	
	False \rightarrow Yes	$2 / 8$	$5 / 14$
	True \rightarrow No*	$3 / 6$	

Discussion of 1R

- 1 R was described in a paper by Holte (1993):

Very Simple Classification Rules Perform Well on Most Commonly Used
Datasets
Robert C. Holte, Computer Science Department, University of Ottawa

- Contains an experimental evaluation on 16 datasets (using crossvalidation to estimate classification accuracy on fresh data)
- Required minimum number of instances in majority class was set to 6 after some experimentation
- 1R's simple rules performed not much worse than much more complex decision trees
- Lesson: simplicity first can pay off on practical datasets
- Note that $1 R$ does not perform as well on more recent, more sophisticated benchmark datasets

Simple probabilistic modeling

- "Opposite" of 1R: use all the attributes
- Two assumptions: Attributes are
- equally important
- statistically independent (given the class value)
- This means knowing the value of one attribute tells us nothing about the value of another takes on (if the class is known)
- Independence assumption is almost never correct!
- But ... this scheme often works surprisingly well in practice
- The scheme is easy to implement in a program and very fast
- It is known as naïve Bayes

13

- A new day:

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	$?$

Likelihood of the two classes

$$
\begin{aligned}
& \text { For "yes" }=2 / 9 \times 3 / 9 \times 3 / 9 \times 3 / 9 \times 9 / 14=0.0053 \\
& \text { For "no" }=3 / 5 \times 1 / 5 \times 4 / 5 \times 3 / 5 \times 5 / 14=0.0206
\end{aligned}
$$

Conversion into a probability by normalization:
$P($ "yes" $)=0.0053 /(0.0053+0.0206)=0.205$
$P($ "no" $)=0.0206 /(0.0053+0.0206)=0.795$

Naïve Bayes for classification

- Classification learning: what is the probability of the class given an instance?
- Evidence $E=$ instance's non-class attribute values
- Event $H=$ class value of instance
- Naïve assumption: evidence splits into parts (i.e., attributes) that are conditionally independent
- This means, given n attributes, we can write Bayes' rule using a product of per-attribute probabilities:

$$
P(H \mid E)=P\left(E_{1} \mid H\right) P\left(E_{3} \mid H\right) * P\left(E_{n} \mid H\right) P(H) / P(E)
$$

Weather data example

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	?
	\leftarrow	Evidence \boldsymbol{E}		

$P($ yes $\mid E)=P($ Outlook $=$ Sunny \mid yes $)$

$P($ Temperature $=$ Cool \mid yes $)$
Probability of class "yes"
$P($ Humidity $=$ High \mid yes $)$
$P($ Windy $=$ True \mid yes $)$
$P($ yes $) / P(E)$
$P($ yes $) / P(E)=\frac{2 / 9 \times 3 / 9 \times 3 / 9 \times 3 / 9 \times 9 / 14}{P(E)}$

Missing values

- Training: instance is not included in frequency count for attribute value-class combination
- Classification: attribute will be omitted from calculation
- Example:

Outlook	Temp.	Humidity	Windy	Play
$?$	Cool	High	True	$?$

$$
\begin{array}{|l}
\text { Likelihood of "yes" }=3 / 9 \times 3 / 9 \times 3 / 9 \times 9 / 14=0.0238 \\
\text { Likelihood of "no" }=1 / 5 \times 4 / 5 \times 3 / 5 \times 5 / 14=0.0343 \\
P(\text { "yes" })=0.0238 /(0.0238+0.0343)=41 \% \\
P(" n o ")=0.0343 /(0.0238+0.0343)=59 \%
\end{array}
$$

18

Numeric attributes

- Usual assumption: attributes have a normal or Gaussian probability distribution (given the class)
- The probability density function for the normal distribution is defined by two parameters:
- Sample mean

$$
\mu=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

- Standard deviation

$$
\sigma=\sqrt{\frac{1}{N-1} \sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}}
$$

- Then the density function $f(x)$ is $f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$

For density function refer to: https://towardsdatascience.com/probability-concepts-explained-probability-distributions-introduction-part-3-4a5db81858dc In probability theory, a probability density function is a function whose value at any given sample in the sample space can be interpreted as providing a relative likelihood that the value of the random variable would equal that sample.

Statistics for weather data

Outlook		Temperature		Humidity		Windy		Play			
	Yes	No	Yes	No	Yes	No		Yes	No	Yes	No
Sunny	2	3	64,68,	65,71,	65,70,	70,85,	False	6	2	9	5
Overcast	4	0	69,70,	72,80,	70,75,	90,91,	True	3	3		
Rainy	3	2	$72, \ldots$	$85, \ldots$	$80, \ldots$	$95, \ldots$					
Sunny	$2 / 9$	$3 / 5$	$\mu=73$	$\mu=75$	$\mu=79$	$\mu=86$	False	$6 / 9$	$2 / 5$	$9 /$	$5 /$
Overcast	$4 / 9$	$0 / 5$	$\sigma=6.2$	$\sigma=7.9$	$\sigma=10.2$	$\sigma=9.7$	True	$3 / 9$	$3 / 5$	14	14
Rainy	$3 / 9$	$2 / 5$									

- Example density value: $f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$

$$
f(\text { temperature }=66 \mid \text { yes })=\frac{1}{\sqrt{2 \pi} \cdot 6.2} e^{-\frac{(66-73)^{2}}{2 \cdot 6.62^{2}}}=0.0340
$$

Classifying a new day

- A new day:

Outlook	Temp.	Humidity	Windy	Play
Sunny	66	90	true	$?$

$$
\begin{aligned}
& \text { Likelihood of "yes" }=2 / 9 \times 0.0340 \times 0.0221 \times 3 / 9 \times 9 / 14=0.000036 \\
& \text { Likelihood of "no" }=3 / 5 \times 0.0221 \times 0.0381 \times 3 / 5 \times 5 / 14=0.000108 \\
& P(\text { "yes" })=0.000036 /(0.000036+0.000108)=25 \% \\
& P(\text { "no" })=0.000108 /(0.000036+0.000108)=75 \%
\end{aligned}
$$

- Missing values during training are not included in calculation of mean and standard deviation

Naïve Bayes on Weather Data

Naïve Bayes: discussion

- Naïve Bayes works surprisingly well even if independence assumption is clearly violated
- Why? Because classification does not require accurate probability estimates as long as maximum probability is assigned to the correct class
- However: adding too many redundant attributes will cause problems (e.g., identical attributes)

Constructing decision trees

- Strategy: top down learning using recursive divide-andconquer process
- First: select attribute for root node

Create branch for each possible attribute value

- Then: split instances into subsets

One for each branch extending from the node

- Finally: repeat recursively for each branch, using only instances that reach the branch
- Stop if all instances have the same class

Which attribute to select?

(C)

(D)

Which attribute to select?

(D)

Criterion for attribute selection

- Which is the best attribute?
- Want to get the smallest tree
- Heuristic: choose the attribute that produces the "purest" nodes
- Popular selection criterion: information gain
- Information gain increases with the average purity of the subsets
- Strategy: amongst attributes available for splitting, choose attribute that gives greatest information gain
- Information gain requires measure of impurity
- Impurity measure that it uses is the entropy of the class distribution, which is a measure from information theory

Computing information

- We have a probability distribution: the class distribution in a subset of instances
- The expected information required to determine an outcome (i.e., class value), is the distribution's entropy
- Formula for computing the entropy:

$$
\text { Entropy }\left(p_{1}, p_{2}, \ldots, p_{n}\right)=-p_{1} \log p_{1}-p_{2} \log p_{2} \ldots-p_{n} \log p_{n}
$$

- Using base-2 logarithms, entropy gives the information required in expected bits
- Entropy is maximal when all classes are equally likely and minimal when one of the classes has probability 1

A Fair Die Example

The Expected Value of a Random Variable or a Function of a Random Variable
Definition
$E(x)$: expected value of x, or $\mu \quad E(x)=\mu=\sum_{x} x p(x)$
Example: The probability distribution of random variable x

x	0	1	2
$p(x)$	$1 / 4$	$1 / 2$	$1 / 4$

The formula for Shannon entropy is as follows,
Find $E(x)$.

x	0	1	2	Total
$p(x)$	$1 / 4$	$1 / 2$	$1 / 4$	1
$x p(x)$	0	$1 / 2$	$1 / 2$	$1=\mathrm{E}(\mathrm{x})$

$$
\operatorname{Entropy}(S)=-\sum_{i} p_{i} \log _{2} p_{i}
$$

Thus, a fair six sided dice should have the entropy,

$$
\sum_{i=1}^{6} \frac{1}{6} \log _{2} \frac{1}{6}=\log _{2}(6)=2.5849 \ldots
$$

Example: Toss a die. $x=$ number observed. Find $p(x)$. $p(x)=1 / 6$ for $x=1,2,3,4,5,6$.
Find $E(x)$.

x	1	2	3	4	5	6	Total
$p(x)$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	$1 / 6$	1
$x p(x)$	$1 / 6$	$2 / 6$	$3 / 6$	$4 / 6$	$5 / 6$	$6 / 6$	$21 / 6=3.5=\mathrm{E}(\mathrm{x})$

Example: attribute Outlook

- Outlook = Sunny :

$$
\begin{array}{ll}
\text { Info }([2,3])=0.971 \text { bits } \quad & -0.4^{*}-1.32192809489+-0.6^{*}- \\
0.736965594166=0.9709
\end{array}
$$

- Outlook = Overcast :

$$
\operatorname{Info}([4,0])=0.0 \text { bits } \quad 1 * 0+0 * 0=0
$$

- Outlook = Rainy :

$$
\operatorname{Info}([3,2])=0.971 \text { bits }
$$

- Expected information for attribute: $1.32192809489=0.9709$

$$
\begin{aligned}
\operatorname{Info}([2,3],[4,0],[3,2]) & =(5 / 14) \times 0.971+(4 / 14) \times 0+(5 / 14) \times 0.971 \\
& =0.693 \text { bits }
\end{aligned}
$$

Computing information gain

- Information gain: information before splitting information after splitting

$$
\begin{aligned}
\text { Gain(Outlook) } & =\operatorname{Info}([9,5])-\operatorname{info}([2,3],[4,0],[3,2]) \\
& =0.940-0.693 \\
& =0.247 \text { bits }
\end{aligned}
$$

- Information gain for attributes from weather data:

Gain(Outlook)	$=0.247$ bits
Gain(Temperature)	$=0.029$ bits
Gain(Humidity)	$=0.152$ bits
Gain (Windy)	$=0.048$ bits

Continuing to split

Final decision tree

- Note: not all leaves need to be pure; sometimes identical instances have different classes
- Splitting stops when data cannot be split any further

Discussion

- Top-down induction of decision trees: ID3, algorithm developed by Ross Quinlan
- C4.5 tree learner deals with numeric attributes, missing values, noisy data
- Similar approach: CART tree learner
- Uses Gini index rather than entropy to measure impurity
- There are many other attribute selection criteria! (But little difference in accuracy of result)

Gini $=1-\sum_{i=1}^{n} p^{2}\left(c_{i}\right)$
Entropy $=\sum_{i=1}^{n}-p\left(c_{i}\right) \log _{2}\left(p\left(c_{i}\right)\right)$

WEKA - REPTree (one of the CART algorithms)

Covering algorithms

- Can convert decision tree into a rule set
- Straightforward, but rule set overly complex
- More effective conversions are not trivial and may incur a lot of computation
- Instead, we can generate rule set directly
- One approach: for each class in turn, find rule set that covers all instances in it (excluding instances not in the class)
- Called a covering approach:
- At each stage of the algorithm, a rule is identified that "covers" some of the instances

- Possible rule set for class " b ":

$$
\begin{aligned}
& \text { If } x \leq 1.2 \text { then class }=\mathrm{b} \\
& \text { If } \mathrm{x}>1.2 \text { and } \mathrm{y} \leq 2.6 \text { then class }=\mathrm{b}
\end{aligned}
$$

- Could add more rules, get "perfect" rule set

Rules vs. trees

- Corresponding decision tree: (produces exactly the same predictions)

- But: rule sets can be more perspicuous (understandable) when decision trees suffer from replicated subtrees
- Also: in multiclass situations, covering algorithm concentrates on one class at a time whereas decision tree learner takes all classes into account

Simple covering algorithm

- Basic idea: generate a rule by adding tests that maximize the rule's accuracy
- Similar to situation in decision trees: problem of selecting an attribute to split on
- But: decision tree inducer maximizes overall purity
- Each new test reduces rule's coverage:

Selecting a test

- Goal: maximize accuracy
- t total number of instances covered by rule
- $\quad p$ positive examples of the class covered by rule
- $t-p$ number of errors made by rule
- Select test that maximizes the ratio p / t
- We are finished when $p / t=1$ or the set of instances cannot be split any further

The contact lenses data

Age	Spectacle prescription	Astigmatism	Tear production rate	Recommended lenses
Young				None
Young	Myope	No	Reduced	Soft
Young	Myope	No	Normal	None
Young	Myope	Yes	Reduced	Hard
Young	Hypermetrope	Yes	Normal	None
Young	Hypermetrope	No	Reduced	Soft
Young	Hypermetrope	No	Normal	None
Young	Hypermetrope	Yes	Reduced	Normal
Pre-presbyopic	Myope	No	Reduced	hard
Pre-presbyopic	Myope	No	Normal	None
Pre-presbyopic	Myope	Yes	Reduced	Soft
Pre-presbyopic	Myope	Yes	Normal	None
Pre-presbyopic	Hypermetrope	No	Reduced	Hard
Pre-presbyopic	Hypermetrope	No	Normal	None
Pre-presbyopic	Hypermetrope	Yes	Reduced	Soft
Pre-presbyopic	Hypermetrope	Yes	Normal	None
Presbyopic	Myope	No	Reduced	None
Presbyopic	Myope	No	Normal	None
Presbyopic	Myope	Yes	Reduced	None
Presbyopic	Myope	Yes	Normal	None
Presbyopic	Hypermetrope	No	Reduced	Hard
Presbyopic	Hypermetrope	No	Normal	None
Presbyopic	Hypermetrope	Yes	Reduced	Soft
Presbyopic	Hypermetrope	Yes	Normal	None
			None	

41

Example: contact lens data

- Rule we seek:

```
If ?
then recommendation = hard
```

- Possible tests:

Age $=$ Young	$2 / 8$
Age $=$ Pre-presbyopic	$1 / 8$
Age $=$ Presbyopic	$1 / 8$
Spectacle prescription $=$ Myope	$3 / 12$
Spectacle prescription $=$ Hypermetrope	$1 / 12$
Astigmatism $=$ no	$0 / 12$
Astigmatism $=$ yes	$4 / 12$
Tear production rate $=$ Reduced	$0 / 12$
Tear production rate $=$ Normal	$4 / 12$

Modified rule and resulting data

- Rule with best test added:

```
If astigmatism = yes
    then recommendation = hard
```

- Instances covered by modified rule:

Age	Spectacle prescription	Astigmatism	Tear production rate	Recommended lenses
Young	Myope	Yes	Reduced	None
Young	Myope	Yes	Normal	Hard
Young	Hypermetrope	Yes	Reduced	None
Young	Hypermetrope	Yes	Normal	hard
Pre-presbyopic	Myope	Yes	Reduced	None
Pre-presbyopic	Myope	Yes	Normal	Hard
Pre-presbyopic	Hypermetrope	Yes	Reduced	None
Pre-presbyopic	Hypermetrope	Yes	Normal	None
Presbyopic	Myope	Yes	Reduced	None
Presbyopic	Myope	Yes	Normal	Hard
Presbyopic	Hypermetrope	Yes	Reduced	None
Presbyopic	Hypermetrope	Yes	Normal	None

Further refinement

- Current state:

```
If astigmatism = yes
    and ?
    then recommendation = hard
```

- Possible tests:

Age $=$ Young	$2 / 4$
Age $=$ Pre-presbyopic	$1 / 4$
Age $=$ Presbyopic	$1 / 4$
Spectacle prescription $=$ Myope	$3 / 6$
Spectacle prescription $=$ Hypermetrope	$1 / 6$
Tear production rate $=$ Reduced	$0 / 6$
Tear production rate $=$ Normal	$4 / 6$

Modified rule and resulting data

- Rule with best test added:

```
If astigmatism = yes
    and tear production rate = normal
then recommendation = hard
```

- Instances covered by modified rule:

Age	Spectacle prescription	Astigmatism	Tear production rate	Recommended lenses
Young	Myope	Yes	Normal	Hard
Young	Hypermetrope	Yes	Normal	hard
Pre-presbyopic	Myope	Yes	Normal	Hard
Pre-presbyopic	Hypermetrope	Yes	Normal	None
Presbyopic	Myope	Yes	Normal	Hard
Presbyopic	Hypermetrope	Yes	Normal	None

Further refinement

- Current state:

```
If astigmatism = yes
                and tear production rate = normal
                and ?
                        then recommendation = hard
```

- Possible tests:

Age $=$ Young	$2 / 2$
Age $=$ Pre-presbyopic	$1 / 2$
Age $=$ Presbyopic	$1 / 2$
Spectacle prescription $=$ Myope	$3 / 3$
Spectacle prescription $=$ Hypermetrope	$1 / 3$

- Tie between the first and the fourth test
- We choose the one with greater coverage

The final rule

- Final rule:
If astigmatism $=$ yes
and tear production rate $=$ normal
and spectacle prescription $=$ myope
then recommendation $=$ hard
- Second rule for recommending "hard lenses": (built from instances not covered by first rule)

```
If age = young and astigmatism = yes
    and tear production rate = normal
    then recommendation = hard
```

- These two rules cover all "hard lenses":
- Process is repeated with other two classes

Pseudo-code for PRISM

```
For each class C
    Initialize E to the instance set
    While E contains instances in class C
        Create a rule R with an empty left-hand side that predicts class C
        Until R is perfect (or there are no more attributes to use) do
            For each attribute A not mentioned in R, and each value v
                Consider adding the condition A = v to the left-hand side of R
                Select A and v to maximize the accuracy p/t
                    (break ties by choosing the condition with the largest p)
            Add A = v to R
        Remove the instances covered by R from E
```


Installing PRISM in WEKA - Package Manager SimpleEducationalLearningSchemes

Separate and conquer rule learning

- Rule learning methods like the one PRISM employs (for each class) are called separate-and-conquer algorithms:
- First, identify a useful rule
- Then, separate out all the instances it covers
- Finally, "conquer" the remaining instances
- Difference to divide-and-conquer methods:
- Subset covered by a rule does not need to be explored any further

Mining association rules

- Naïve method for finding association rules:
- Use separate-and-conquer method
- Treat every possible combination of attribute values as a separate class
- Two problems:
- Computational complexity
- Resulting number of rules (which would have to be pruned on the basis of support and confidence)
- It turns out that we can look for association rules with high support and accuracy directly

Item sets: the basis for finding rules

- Support: number of instances correctly covered by association rule
- The same as the number of instances covered by all tests in the rule (LHS and RHS!)
- Item: one test/attribute-value pair
- Item set : all items occurring in a rule
- Goal: find only rules that exceed pre-defined support
- Do it by finding all item sets with the given minimum support and generating rules from them!

Weather data

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Item sets for weather data

One-item sets	Two-item sets	Three-item sets	Four-item sets
Outlook $=$ Sunny (5)	Outlook $=$ Sunny Temperature $=$ Hot (2)	Outlook $=$ Sunny Temperature $=$ Hot Humidity $=$ High (2)	Outlook $=$ Sunny Temperature $=$ Hot Humidity $=$ High
Temperature $=$ Cool (4)	Outlook $=$ Sunny	Play $=$ No (2)	
	Humidity $=$ High (3)	Outlook $=$ Sunny Humidity $=$ High Windy $=$ False (2)	Outlook $=$ Rainy Temperature $=$ Mild
			Windy $=$ False
	\ldots	\ldots	Play $=$ Yes (2)

- Total number of item sets with a minimum support of at least two instances: 12 one-item sets, 47 two-item sets, 39 three-item sets, 6 four-item sets and 0 five-item sets

Generating rules from an item set

- Once all item sets with the required minimum support have been generated, we can turn them into rules
- Example 4-item set with a support of 4 instances:

$$
\text { Humidity }=\text { Normal, Windy }=\text { False, Play }=\text { Yes (4) }
$$

- Seven $\left(2^{\mathrm{N}}-1\right)$ potential rules:

```
If Humidity = Normal and Windy = False then Play = Yes 4/4
If Humidity = Normal and Play = Yes then Windy = False 4/6
If Windy = False and Play = Yes then Humidity = Normal 4/6
If Humidity = Normal then Windy = False and Play = Yes 4/7
If Windy = False then Humidity = Normal and Play = Yes 4/8
If Play = Yes then Humidity = Normal and Windy = False 4/9
If True then Humidity = Normal and Windy = False
    and Play = Yes

\section*{Rules for weather data}
- All rules with support > 1 and confidence \(=100 \%\) :
\begin{tabular}{|lllll|}
\hline Association rule & & Sup. & Conf. \\
\hline 1 & Humidity=Normal Windy=False & \(\Rightarrow\) Play=Yes & 4 & \(100 \%\) \\
2 & Temperature=Cool & \(\Rightarrow\) Humidity=Normal & 4 & \(100 \%\) \\
3 & Outlook=Overcast & \(\Rightarrow\) Play=Yes & 4 & \(100 \%\) \\
4 & Temperature=Cold Play=Yes & \(\Rightarrow\) Humidity=Normal & 3 & \(100 \%\) \\
& \(\ldots\) & \(\ldots\) & \(\ldots\) & \(\ldots\) \\
58 & Outlook=Sunny Temperature=Hot & \(\Rightarrow\) Humidity=High & 2 & \(100 \%\) \\
\hline
\end{tabular}
- In total:

3 rules with support four
5 with support three
50 with support two

\section*{Example rules from the same item set}
- Item set:

Temperature \(=\) Cool, Humidity \(=\) Normal, Windy \(=\) False, Play \(=\) Yes (2)
- Resulting rules (all with \(100 \%\) confidence):
```

Temperature = Cool, Windy = False }=>\mathrm{ Humidity = Normal, Play = Yes
Temperature = Cool, Windy = False, Humidity = Normal => Play = Yes
Temperature = Cool, Windy = False, Play = Yes => Humidity = Normal

```
- We can establish their confidence due to the following "frequent" item sets:
```

Temperature = Cool, Windy = False
Temperature = Cool, Humidity = Normal, Windy = False
Temperature = Cool, Windy = False, Play = Yes

59

Weka Class Association Rules

Generating item sets efficiently

- How can we efficiently find all frequent item sets?
- Finding one-item sets easy
- Idea: use one-item sets to generate two-item sets, two-item sets to generate three-item sets, ...
- If $(A B)$ is a frequent item set, then (A) and (B) have to be frequent item sets as well!
- In general: if X is a frequent k-item set, then all $(k-1)$-item subsets of X are also frequent
- Compute k-item sets by merging ($k-1$)-item sets

Example

- Given: five frequent three-item sets
(A B C), (A B D), (A C D), (A C E), (BCD)
- Lexicographically ordered!
- Candidate four-item sets:

$(A B C D)$	OK because of (ACD) (BCD) (A B C)
$(A C D E)$	Not OK because of (CD E)

- To establish that these item sets are really frequent, we need to perform a final check by counting instances
- For fast look-up, the ($k-1$)-item sets are stored in a hash table

Algorithm for finding item sets

Set k to 1
Find all k-item sets with sufficient coverage and store them in hash table \#1
While some k-item sets with sufficient coverage have been found
Increment k
Find all pairs of $(k-1)$-item sets in hash table \#($k-1$) that differ only in their last item
Create a k-item set for each pair by combining the two $(k-1)$-item sets that are paired
Remove all k-item sets containing any $(k-1)$-item sets that are not in the \#($k-1$) hash table
Scan the data and remove all remaining k-item sets that do not have sufficient coverage
Store the remaining k-item sets and their coverage in hash table $\# k$, sorting items in lexical order

Association rules: discussion

- Above method makes one pass through the data for each different item set size
- Another possibility: generate ($k+2$)-item sets just after ($k+1$)-item sets have been generated
- Result: more candidate ($k+2$)-item sets than necessary will be generated but this requires less passes through the data
- Makes sense if data too large for main memory
- Practical issue: support level for generating a certain minimum number of rules for a particular dataset
- This can be done by running the whole algorithm multiple times with different minimum support levels
- Support level is decreased until a sufficient number of rules has been found

Linear models: linear regression

- Work most naturally with numeric attributes
- Standard technique for numeric prediction
- Outcome is linear combination of attributes
$x=w_{0}+w_{1} a_{1}+w_{2} a_{2}+\cdots+w_{k} a_{k}$
- Weights are calculated from the training data
- Predicted value for first training instance $\mathbf{a}^{(1)}$

$$
w_{0} a_{0}^{(1)}+w_{1} a_{1}^{(1)}+w_{2} a_{2}^{(1)}+\cdots+w_{k} a_{k}^{(1)}=\sum_{j=0}^{k} w_{j} a_{j}^{(1)}
$$

Minimizing the squared error

- Choose $k+1$ coefficients to minimize the squared error on the training data
- Squared error: $\sum_{i=1}^{n}\left(x^{(i)}-\sum_{j=0}^{k} w_{j} a_{j}^{(i)}\right)^{2}$
- Coefficients can be derived using standard matrix operations
- Can be done if there are more instances than attributes (roughly speaking)
- Minimizing the absolute error is more difficult

An example: http://faculty.cas.usf.edu/mbrannick/regression/Part3/Reg2.html

Classification

- Any regression technique can be used for classification
- Training: perform a regression for each class, setting the output to 1 for training instances that belong to class, and 0 for those that don't
- Prediction: predict class corresponding to model with largest output value (membership value)
- For linear regression this method is also known as multiresponse linear regression
- Problem: membership values are not in the [0,1] range.
- Membership values can fall outside range
- So they cannot be considered proper probability estimates
- In practice, they are often simply clipped into the $[0,1]$ range and normalized to sum to 1

Linear models: logistic regression

- Can we do better than using linear regression for classification?
- Yes, we can, by applying logistic regression
- Logistic regression builds a linear model for a transformed target variable
- Assume we have two classes
- Logistic regression replaces the target (probability)

$$
\operatorname{Pr}\left[1 \mid a_{1}, a_{2}, \ldots, a_{k}\right]
$$

by this target (odds)

$$
\log \left[\operatorname{Pr}\left[1 \mid a_{1}, a_{2}, \ldots, a_{k}\right] /\left(1-\operatorname{Pr}\left[1 \mid a_{1}, a_{2}, \ldots, a_{k}\right]\right)\right.
$$

- This logit transformation maps $[0,1]$ to $(-\infty,+\infty)$, i.e., the new target values are no longer restricted to the [0,1] interval

Logistic regression explained

Table 3.1: Current Use of Contraception Among Married Women
by Age, Education and Desire for More Children
Fiji Fertility Survey, 1975

Age	Education	Desires More	Contraceptive Use			Total
		Children?	No	Yes		
<25	Lower	Yes	53	6	59	
		No	10	4	14	
	Upper	Yes	212	52	264	
		No	50	10	60	
$25-\mathbf{2 9}$	Lower	Yes	60	14	74	
		No	19	10	29	
	Upper	Yes	155	54	209	
		No	65	27	92	
$30-39$	Lower	Yes	112	33	145	
		No	77	80	157	
	Upper	Yes	118	46	164	
		No	68	78	146	
$40-49$	Lower	Yes	35	6	41	
		No	46	48	94	
	Upper	Yes	8	8	16	
		No	12	31	43	
Total			1100	507	1607	

- In the contraceptive use data there are 507 users of contraception among 1607 women.
- So we estimate the probability as $507 / 1607=0.316$.
- The odds are $507 / 1100$ or 0.461 to one, so non-users outnumber users roughly two to one.
- The logit is $\log (0.461)=-0.775$.

See for details: https://data.princeton.edu/wws509/notes/c3.pdf

Logit transformation

- Resulting class probability model:

$$
\operatorname{Pr}\left[1 \mid a_{1}, a_{2}, \ldots, a_{k}\right]=1 /\left(1+\exp \left(-w_{0}-w_{1} a_{1}-\cdots-w_{\mathrm{k}} a_{\mathrm{k}}\right)\right)
$$

Example logistic regression model

- Model with $w_{0}=-1.25$ and $w_{1}=0.5$:

- Parameters are found from training data using maximum likelihood

Linearly separable data

- A dataset is said to be linearly separable if it is possible to draw a line that can separate points belonging to different classes from each other.

- Linearly non-separable data:

Illustrative figures taken from:
https://www.commonlounge.com/discussion/6caf49570d9c4d0789afbc544b32cdbf

Linearly separable data

- A dataset is said to be linearly separable if it is possible to draw a line that can separate points belonging to different classes from each other.

Algebraic definition:

- Algebraically, the separator is a linear function, i.e. if data point x is given by ($\mathrm{x} 1, \mathrm{x} 2$), when the separator is a function $\mathrm{f}(\mathrm{x})=\mathrm{w} 1^{*} \mathrm{x} 1+\mathrm{w} 2^{*} \mathrm{x} 2+\mathrm{b}$
- All points for which $f(x)=0$, are on the separator line. All points for which $f(x)>$ 0 are on one side of the line, and all points for which $f(x)<0$ are on the other side.

Illustrative figures taken from:
https://www.commonlounge.com/discussion/6caf49570d9c4d0789afbc544b32cdbf

Linear models are hyperplanes

- Decision boundary for two-class logistic regression is where probability equals 0.5 :

$$
\operatorname{Pr}\left[1 \mid a_{1}, a_{2}, \ldots, a_{k}\right]=1 /\left(1+\exp \left(-w_{0}-w_{1} a_{1}-\cdots-w_{k} a_{k}\right)\right)=0.5
$$

which occurs when $-w_{0}-w_{1} a_{1}-\cdots-w_{k} a_{k}=0$

- Thus logistic regression can only separate data that can be separated by a hyperplane

Linear models: the perceptron

- Observation: we do not actually need probability estimates if all we want to do is classification
- Different approach: learn separating hyperplane directly
- Let us assume the data is linearly separable
- In that case there is a simple algorithm for learning a separating hyperplane called the perceptron learning rule
- Hyperplane: $w_{0} a_{0}+w_{1} a_{1}+w_{2} a_{2}+\cdots+w_{k} a_{k}=0$
where we again assume that there is a constant attribute with value 1 (bias)
- If the weighted sum is greater than zero we predict the first class, otherwise the second class

Perceptron as a neural network

Output
layer

Input
layer

The algorithm

```
Set all weights to zero
Until all instances in the training data are classified correctly
    For each instance I in the training data
        If I is classified incorrectly by the perceptron
        If I belongs to the first class add it to the weight vector
        else subtract it from the weight vector
```

Algorithm: Perceptron Learning Algorithm
$P \leftarrow$ inputs with label 1 ;
$N \leftarrow$ inputs with label 0 ;
Initialize w randomly;
while !convergence do
Pick random $\mathrm{x} \in P \cup N$;
if $\mathrm{x} \in P$ and $\mathrm{w} . \mathrm{x}<0$ then
$\mathbf{w}=\mathbf{w}+\mathbf{x} ;$
end
if $\mathrm{x} \in N$ and $\mathrm{w} \cdot \mathrm{x} \geq 0$ then
$\mathrm{w}=\mathrm{w}-\mathrm{x}$;
end
end
//the algorithm converges when all the
inputs are classified correctly

If there are two vectors of
size $\mathbf{n + 1}, \mathbf{w}$ and \mathbf{x}, the dot product of these vectors ($\boldsymbol{w} . \boldsymbol{x}$) could be computed as follows:

$$
\begin{aligned}
\mathbf{w} & =\left[w_{0}, w_{1}, w_{2}, \ldots, w_{n}\right] \\
\mathbf{x} & =\left[1, x_{1}, x_{2}, \ldots, x_{n}\right] \\
\mathbf{w} \cdot \mathbf{x} & =\mathbf{w}^{\mathrm{T}} \mathbf{x}=\sum_{n}^{n} w_{i} * x_{i}
\end{aligned}
$$

Multilayer Perceptron as a neural network - IRIS dataset

Clustering

- Clustering techniques apply when there is no class to be predicted: they perform unsupervised learning
- Aim: divide instances into "natural" groups
- As we have seen, clusters can be:
- disjoint vs. overlapping
- deterministic vs. probabilistic
- flat vs. hierarchical
- We will look at a classic clustering algorithm called k-means
- k-means clusters are disjoint, deterministic, and flat

Euclidian distance formula:

Manhattan distance formula: $\quad d_{\operatorname{man}}(x, y)=\sum_{i=1}^{n}\left|\left(x_{i}-y_{i}\right)\right|$

The k-means algorithm

- Step 1: Choose k random cluster centers
- Step 2: Assign each instance to its closest cluster center based on Euclidean distance
- Step 3: Recompute cluster centers by computing the average (aka centroid) of the instances pertaining to each cluster
- Step 4: If cluster centers have moved, go back to Step 2
- This algorithm minimizes the squared Euclidean distance of the instances from their corresponding cluster centers
- Determines a solution that achieves a local minimum of the squared Euclidean distance
- Equivalent termination criterion: stop when assignment of instances to cluster centers has not changed

Discussion

- Algorithm minimizes squared distance to cluster centers
- Result can vary significantly
- based on initial choice of seeds
- Can get trapped in local minimum
- Example:

- To increase chance of finding global optimum: restart with different random seeds
- Can be applied recursively with $k=2$

Hierarchical clustering

- Bisecting k-means performs hierarchical clustering in a top-down manner
- Standard hierarchical clustering performs clustering in a bottomup manner; it performs agglomerative clustering:
- First, make each instance in the dataset into a trivial mini-cluster
- Then, find the two closest clusters and merge them; repeat
- Clustering stops when all clusters have been merged into a single cluster
- Outcome is determined by the distance function that is used:
- Single-linkage clustering: distance of two clusters is measured by finding the two closest instances, one from each cluster, and taking their distance
- Complete-linkage clustering: use the two most distant instances instead
- Average-linkage clustering: take average distance between all instances
- Centroid-linkage clustering: take distance of cluster centroids
- Group-average clustering: take average distance in merged clusters
- Ward's method: optimize k-means criterion (i.e., squared distance)

Example: hierarchical clustering

Hierarchical Clustering Demo

- Open glass.arff.
- Normalize numeric attributes.
- Data normalization is the process of rescaling one or more attributes to the range of 0 (smallest) to 1 (largest).
- Normalization is a good technique to use when features have different ranges.
- E.g. age ranges from 0-100, income ranges from 0-20 mn or higher. Due to larger values, income will influence the result.
- You can normalize all of the attributes in your dataset with Weka by choosing the Normalize filter and applying it to your dataset.
- Filter -> unsupervised -> attribute -> normalize.

Hierarchical Clustering Demo

Hierarchical Clustering Demo

Some final comments on the basic methods

- Bayes' rule stems from his "Essay towards solving a problem in the doctrine of chances" (1763)
- Difficult bit in general: estimating prior probabilities (easy in the case of naïve Bayes)
- Extension of naïve Bayes: Bayesian networks
- The algorithm for association rules we discussed is called APRIORI; many other algorithms exist
- Minsky and Papert (1969) showed that linear classifiers have limitations, e.g., can't learn a logical XOR of two attributes
- But: combinations of them can (this yields multi-layer neural nets)

