
1

Algorithms: The basic methods

Most of these slides (used with permission) are based on the book:

Data Mining: Practical Machine Learning Tools and Techniques
by I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal

2

Algorithms: The basic methods

• Inferring rudimentary rules
• Simple probabilistic modeling
• Constructing decision trees
• Constructing rules
• Association rule learning
• Linear models
• Clustering

1

2

2

3

Simplicity first

• Simple algorithms often work very well!
• There are many kinds of simple structure, e.g.:

• One attribute does all the work
• All attributes contribute equally & independently

• Logical structure with a few attributes suitable for tree

• A set of simple logical rules

• Relationships between groups of attributes
• A weighted linear combination of the attributes

• Strong neighborhood relationships based on distance

• Clusters of data in unlabeled data
• Bags of instances that can be aggregated

• Success of method depends on the domain

4

Inferring rudimentary rules

• 1R rule learner: learns a 1-level decision tree
• A set of rules that all test one particular attribute that has been

identified as the one that yields the lowest classification error

• Basic version for finding the rule set from a given
training set (assumes nominal attributes):
• For each attribute

• Make one branch for each value of the attribute

• To each branch, assign the most frequent class value of the
instances pertaining to that branch

• Error rate: proportion of instances that do not belong to
the majority class of their corresponding branch

• Choose attribute with lowest error rate

3

4

3

5

Pseudo-code for 1R

For each attribute,
For each value of the attribute, make a rule as follows:

count how often each class appears
find the most frequent class
make the rule assign that class to this attribute-value

Calculate the error rate of the rules
Choose the rules with the smallest error rate

• 1R’s handling of missing values: a missing value is
treated as a separate attribute value

6

Evaluating the weather attributes

3/6True No

5/142/8False YesWindy

1/7Normal Yes

4/143/7High NoHumidity

5/14

4/14

Total
errors

1/4Cool Yes

2/6Mild Yes

2/4Hot NoTemp

2/5Rainy Yes

0/4Overcast Yes

2/5Sunny NoOutlook

ErrorsRulesAttribute

NoTrueHighMildRainy

YesFalseNormalHotOvercast

YesTrueHighMildOvercast

YesTrueNormalMildSunny

YesFalseNormalMildRainy

YesFalseNormalCoolSunny

NoFalseHighMildSunny

YesTrueNormalCoolOvercast

NoTrueNormalCoolRainy

YesFalseNormalCoolRainy

YesFalseHighMildRainy

YesFalseHighHot Overcast

NoTrueHighHotSunny

NoFalseHighHotSunny

PlayWindyHumidityTempOutlook

5

6

4

7

Dealing with numeric attributes
• Idea: discretize numeric attributes into sub ranges (intervals)

• Discretization is the process of putting values into buckets so that there are a
limited number of possible states.

• How to divide each attribute’s overall range into intervals?
• Sort instances according to attribute’s values

• Place breakpoints where (majority) class changes

• This minimizes the total classification error

• Example: temperature from weather data

64 65 68 69 70 71 72 72 75 75 80 81 83 85
Yes | No | Yes Yes Yes | No No Yes | Yes Yes | No | Yes Yes | No

……………

YesFalse8075Rainy

YesFalse8683Overcast

NoTrue9080Sunny

NoFalse8585Sunny

PlayWindyHumidityTemperatureOutlook

8

The problem of overfitting

• Discretization procedure is very sensitive to noise
• A single instance with an incorrect class label will probably produce a separate

interval

• Simple solution:
enforce minimum number of instances in majority class per interval

• Example: temperature attribute with required minimum number of instances in
majority class set to three:

64 65 68 69 70 71 72 72 75 75 80 81 83 85
Yes | No | Yes Yes Yes | No No Yes | Yes Yes | No | Yes Yes | No

64 65 68 69 70 71 72 72 75 75 80 81 83 85
Yes No Yes Yes Yes | No No Yes Yes Yes | No Yes Yes No

7

8

5

9

Results with overfitting avoidance

• Resulting rule sets for the four attributes in the weather
data, with only two rules for the temperature attribute:

0/1> 95.5 Yes

3/6True No*

5/142/8False YesWindy

2/6> 82.5 and 95.5 No

3/141/7 82.5 YesHumidity

5/14

4/14

Total errors

2/4> 77.5 No*

3/10 77.5 YesTemperature

2/5Rainy Yes

0/4Overcast Yes

2/5Sunny NoOutlook

ErrorsRulesAttribute

10

Discussion of 1R

• 1R was described in a paper by Holte (1993):

• Contains an experimental evaluation on 16 datasets (using cross-
validation to estimate classification accuracy on fresh data)

• Required minimum number of instances in majority class was set to 6
after some experimentation

• 1R’s simple rules performed not much worse than much more complex
decision trees

• Lesson: simplicity first can pay off on practical datasets
• Note that 1R does not perform as well on more recent, more

sophisticated benchmark datasets

Very Simple Classification Rules Perform Well on Most Commonly Used
Datasets
Robert C. Holte, Computer Science Department, University of Ottawa

9

10

6

11

1R on weather data (numeric)

12

Simple probabilistic modeling

• “Opposite” of 1R: use all the attributes
• Two assumptions: Attributes are

• equally important
• statistically independent (given the class value)

• This means knowing the value of one attribute tells us nothing
about the value of another takes on (if the class is known)

• Independence assumption is almost never correct!
• But … this scheme often works surprisingly well in practice
• The scheme is easy to implement in a program and very

fast
• It is known as naïve Bayes

11

12

7

13

Probabilities for weather data

5/
14

5

No

9/
14

9

Yes

Play

3/5

2/5

3

2

No

3/9

6/9

3

6

Yes

True

False

True

False

Windy

1/5

4/5

1

4

NoYesNoYesNoYes

6/9

3/9

6

3

Normal

High

Normal

High

Humidity

1/5

2/5

2/5

1

2

2

3/9

4/9

2/9

3

4

2

Cool2/53/9Rainy

Mild

Hot

Cool

Mild

Hot

Temperature

0/54/9Overcast

3/52/9Sunny

23Rainy

04Overcast

32Sunny

Outlook

NoTrueHighMildRainy

YesFalseNormalHotOvercast

YesTrueHighMildOvercast

YesTrueNormalMildSunny

YesFalseNormalMildRainy

YesFalseNormalCoolSunny

NoFalseHighMildSunny

YesTrueNormalCoolOvercast

NoTrueNormalCoolRainy

YesFalseNormalCoolRainy

YesFalseHighMildRainy

YesFalseHighHot Overcast

NoTrueHighHotSunny

NoFalseHighHotSunny

PlayWindyHumidityTempOutlook

14

Probabilities for weather data

5/
14

5

No

9/
14

9

Yes

Play

3/5

2/5

3

2

No

3/9

6/9

3

6

Yes

True

False

True

False

Windy

1/5

4/5

1

4

NoYesNoYesNoYes

6/9

3/9

6

3

Normal

High

Normal

High

Humidity

1/5

2/5

2/5

1

2

2

3/9

4/9

2/9

3

4

2

Cool2/53/9Rainy

Mild

Hot

Cool

Mild

Hot

Temperature

0/54/9Overcast

3/52/9Sunny

23Rainy

04Overcast

32Sunny

Outlook

?TrueHighCoolSunny

PlayWindyHumidityTemp.Outlook• A new day:

Likelihood of the two classes

For “yes” = 2/9 3/9 3/9 3/9 9/14 = 0.0053

For “no” = 3/5 1/5 4/5 3/5 5/14 = 0.0206

Conversion into a probability by normalization:

P(“yes”) = 0.0053 / (0.0053 + 0.0206) = 0.205

P(“no”) = 0.0206 / (0.0053 + 0.0206) = 0.795

13

14

8

15

Naïve Bayes for classification

• Classification learning: what is the probability of the
class given an instance?
• Evidence E = instance’s non-class attribute values

• Event H = class value of instance

• Naïve assumption: evidence splits into parts (i.e.,
attributes) that are conditionally independent

• This means, given n attributes, we can write Bayes’ rule
using a product of per-attribute probabilities:

P(H |E)= P(E1 |H)P(E3 |H)… P(En |H)P(H) / P(E)*

16

Weather data example

?TrueHighCoolSunny

PlayWindyHumidityTemp.Outlook Evidence E

Probability of
class “yes”

P(yes | E) = P(Outlook = Sunny | yes)

P(Temperature =Cool | yes)

P(Humidity = High | yes)

P(Windy = True | yes)

P(yes) / P(E)

= 2 / 93 / 93 / 93 / 9 9 /14

P(E)

15

16

9

17

Missing values

• Training: instance is not included in frequency count for
attribute value-class combination

• Classification: attribute will be omitted from calculation

• Example:

?TrueHighCool?

PlayWindyHumidityTemp.Outlook

Likelihood of “yes” = 3/9 3/9 3/9 9/14 = 0.0238

Likelihood of “no” = 1/5 4/5 3/5 5/14 = 0.0343

P(“yes”) = 0.0238 / (0.0238 + 0.0343) = 41%

P(“no”) = 0.0343 / (0.0238 + 0.0343) = 59%

17

18

10

19

Numeric attributes
• Usual assumption: attributes have a normal or Gaussian

probability distribution (given the class)
• The probability density function for the normal

distribution is defined by two parameters:

• Sample mean

• Standard deviation

• Then the density function f(x) is

For density function refer to: https://towardsdatascience.com/probability-concepts-
explained-probability-distributions-introduction-part-3-4a5db81858dc
In probability theory, a probability density function is a function whose value at
any given sample in the sample space can be interpreted as providing a relative
likelihood that the value of the random variable would equal that sample.

20

Statistics for weather data

• Example density value:

5/
14

5

No

9/
14

9

Yes

Play

3/5

2/5

3

2

No

3/9

6/9

3

6

Yes

True

False

True

False

Windy

 =9.7

 =86

95, …

90, 91,

70, 85,

NoYesNoYesNoYes

 =10.2

 =79

80, …

70, 75,

65, 70,

Humidity

 =7.9

 =75

85, …

72,80,

65,71,

 =6.2

 =73

72, …

69, 70,

64, 68,

2/53/9Rainy

Temperature

0/54/9Overcast

3/52/9Sunny

23Rainy

04Overcast

32Sunny

Outlook

19

20

11

21

Classifying a new day

• A new day:

• Missing values during training are not included
in calculation of mean and standard deviation

?true9066Sunny

PlayWindyHumidityTemp.Outlook

Likelihood of “yes” = 2/9 0.0340 0.0221 3/9 9/14 = 0.000036

Likelihood of “no” = 3/5 0.0221 0.0381 3/5 5/14 = 0.000108

P(“yes”) = 0.000036 / (0.000036 + 0. 000108) = 25%

P(“no”) = 0.000108 / (0.000036 + 0. 000108) = 75%

Naïve Bayes on Weather Data

21

22

12

23

Naïve Bayes: discussion

• Naïve Bayes works surprisingly well even if independence
assumption is clearly violated

• Why? Because classification does not require accurate
probability estimates as long as maximum probability is
assigned to the correct class

• However: adding too many redundant attributes will cause
problems (e.g., identical attributes)

24

Constructing decision trees

• Strategy: top down learning using recursive divide-and-
conquer process
• First: select attribute for root node

Create branch for each possible attribute value

• Then: split instances into subsets
One for each branch extending from the node

• Finally: repeat recursively for each branch, using only instances that
reach the branch

• Stop if all instances have the same class

23

24

13

25

Which attribute to select?

26

Which attribute to select?

25

26

14

27

Criterion for attribute selection

• Which is the best attribute?
• Want to get the smallest tree

• Heuristic: choose the attribute that produces the “purest” nodes

• Popular selection criterion: information gain
• Information gain increases with the average purity of the subsets

• Strategy: amongst attributes available for splitting, choose
attribute that gives greatest information gain

• Information gain requires measure of impurity
• Impurity measure that it uses is the entropy of the class

distribution, which is a measure from information theory

28

Computing information

• We have a probability distribution: the class distribution
in a subset of instances

• The expected information required to determine an
outcome (i.e., class value), is the distribution’s entropy

• Formula for computing the entropy:

• Using base-2 logarithms, entropy gives the information
required in expected bits

• Entropy is maximal when all classes are equally likely
and minimal when one of the classes has probability 1

27

28

15

A Fair Die Example

30

Example: attribute Outlook

• Outlook = Sunny :

• Outlook = Overcast :

• Outlook = Rainy :

• Expected information for attribute:

-0.4 * -1.32192809489 + -0.6 * -
0.736965594166 = 0.9709

-0.6 * -0.736965594166 + -0.4 * -
1.32192809489 = 0.9709

1 * 0 + 0 * 0 = 0

29

30

16

31

Computing information gain

• Information gain: information before splitting –
information after splitting

• Information gain for attributes from weather data:

Gain(Outlook) = 0.247 bits
Gain(Temperature) = 0.029 bits
Gain(Humidity) = 0.152 bits
Gain(Windy) = 0.048 bits

Gain(Outlook) = Info([9,5]) – info([2,3],[4,0],[3,2])
= 0.940 – 0.693
= 0.247 bits

32

Continuing to split

Gain(Temperature) = 0.571 bits
Gain(Humidity) = 0.971 bits
Gain(Windy) = 0.020 bits

31

32

17

33

Final decision tree

• Note: not all leaves need to be pure; sometimes identical
instances have different classes

• Splitting stops when data cannot be split any further

34

Discussion

• Top-down induction of decision trees: ID3,
algorithm developed by Ross Quinlan
• C4.5 tree learner deals with numeric attributes, missing

values, noisy data

• Similar approach: CART tree learner
• Uses Gini index rather than entropy to measure

impurity

• There are many other attribute selection criteria!
(But little difference in accuracy of result)

33

34

18

WEKA – REPTree (one of the CART algorithms)

36

Covering algorithms

• Can convert decision tree into a rule set
• Straightforward, but rule set overly complex
• More effective conversions are not trivial and may incur a lot of

computation

• Instead, we can generate rule set directly
• One approach: for each class in turn, find rule set that covers all

instances in it
(excluding instances not in the class)

• Called a covering approach:
• At each stage of the algorithm, a rule is identified that “covers”

some of the instances

35

36

19

37

Example: generating a rule

If x > 1.2
then class = a

If x > 1.2 and y > 2.6
then class = a

If true
then class = a

• Possible rule set for class “b”:

• Could add more rules, get “perfect” rule set

If x 1.2 then class = b

If x > 1.2 and y 2.6 then class = b

38

Rules vs. trees

• Corresponding decision tree:
(produces exactly the same
predictions)

• But: rule sets can be more perspicuous (understandable)
when decision trees suffer from replicated subtrees

• Also: in multiclass situations, covering algorithm
concentrates on one class at a time whereas decision
tree learner takes all classes into account

37

38

20

39

Simple covering algorithm

• Basic idea: generate a rule by adding tests that maximize the
rule’s accuracy

• Similar to situation in decision trees: problem of selecting an
attribute to split on
• But: decision tree inducer maximizes overall purity

• Each new test reduces
rule’s coverage:

40

Selecting a test

• Goal: maximize accuracy
• t total number of instances covered by rule

• p positive examples of the class covered by rule

• t – p number of errors made by rule

• Select test that maximizes the ratio p/t

• We are finished when p/t = 1 or the set of instances
cannot be split any further

39

40

21

41

The contact lenses data

NoneReducedYesHypermetropePre-presbyopic
NoneNormalYesHypermetropePre-presbyopic
NoneReducedNoMyopePresbyopic
NoneNormalNoMyopePresbyopic
NoneReducedYesMyopePresbyopic
HardNormalYesMyopePresbyopic
NoneReducedNoHypermetropePresbyopic
SoftNormalNoHypermetropePresbyopic
NoneReducedYesHypermetropePresbyopic
NoneNormalYesHypermetropePresbyopic

SoftNormalNoHypermetropePre-presbyopic
NoneReducedNoHypermetropePre-presbyopic
HardNormalYesMyopePre-presbyopic
NoneReducedYesMyopePre-presbyopic
SoftNormalNoMyopePre-presbyopic
NoneReducedNoMyopePre-presbyopic
hardNormalYesHypermetropeYoung
NoneReducedYesHypermetropeYoung
SoftNormalNoHypermetropeYoung
NoneReducedNoHypermetropeYoung
HardNormalYesMyopeYoung
NoneReducedYesMyopeYoung
SoftNormalNoMyopeYoung
NoneReducedNoMyopeYoung

Recommended
lenses

Tear production rateAstigmatismSpectacle prescriptionAge

42

Example: contact lens data

• Rule we seek:

• Possible tests:

4/12Tear production rate = Normal

0/12Tear production rate = Reduced

4/12Astigmatism = yes

0/12Astigmatism = no

1/12Spectacle prescription = Hypermetrope

3/12Spectacle prescription = Myope

1/8Age = Presbyopic

1/8Age = Pre-presbyopic

2/8Age = Young

If ?
then recommendation = hard

41

42

22

43

Modified rule and resulting data

• Rule with best test added:

• Instances covered by modified rule:

NoneReducedYesHypermetropePre-presbyopic
NoneNormalYesHypermetropePre-presbyopic
NoneReducedYesMyopePresbyopic
HardNormalYesMyopePresbyopic
NoneReducedYesHypermetropePresbyopic
NoneNormalYesHypermetropePresbyopic

HardNormalYesMyopePre-presbyopic
NoneReducedYesMyopePre-presbyopic
hardNormalYesHypermetropeYoung
NoneReducedYesHypermetropeYoung
HardNormalYesMyopeYoung
NoneReducedYesMyopeYoung

Recommended
lenses

Tear production
rate

AstigmatismSpectacle prescriptionAge

If astigmatism = yes
then recommendation = hard

44

Further refinement

• Current state:

• Possible tests:

4/6Tear production rate = Normal

0/6Tear production rate = Reduced

1/6Spectacle prescription = Hypermetrope

3/6Spectacle prescription = Myope

1/4Age = Presbyopic

1/4Age = Pre-presbyopic

2/4Age = Young

If astigmatism = yes
and ?

then recommendation = hard

43

44

23

45

Modified rule and resulting data

• Rule with best test added:

• Instances covered by modified rule:

NoneNormalYesHypermetropePre-presbyopic
HardNormalYesMyopePresbyopic
NoneNormalYesHypermetropePresbyopic

HardNormalYesMyopePre-presbyopic
hardNormalYesHypermetropeYoung
HardNormalYesMyopeYoung

Recommended
lenses

Tear production
rate

AstigmatismSpectacle prescriptionAge

If astigmatism = yes
and tear production rate = normal

then recommendation = hard

46

Further refinement

• Current state:

• Possible tests:

• Tie between the first and the fourth test
• We choose the one with greater coverage

1/3Spectacle prescription = Hypermetrope

3/3Spectacle prescription = Myope

1/2Age = Presbyopic

1/2Age = Pre-presbyopic

2/2Age = Young

If astigmatism = yes
and tear production rate = normal
and ?

then recommendation = hard

45

46

24

47

The final rule

• Final rule:

• Second rule for recommending “hard lenses”:
(built from instances not covered by first rule)

• These two rules cover all “hard lenses”:
• Process is repeated with other two classes

If astigmatism = yes
and tear production rate = normal
and spectacle prescription = myope
then recommendation = hard

If age = young and astigmatism = yes
and tear production rate = normal
then recommendation = hard

48

Pseudo-code for PRISM

For each class C
Initialize E to the instance set
While E contains instances in class C

Create a rule R with an empty left-hand side that predicts class C
Until R is perfect (or there are no more attributes to use) do

For each attribute A not mentioned in R, and each value v,
Consider adding the condition A = v to the left-hand side of R
Select A and v to maximize the accuracy p/t

(break ties by choosing the condition with the largest p)
Add A = v to R

Remove the instances covered by R from E

47

48

25

Installing PRISM in WEKA – Package Manager
SimpleEducationalLearningSchemes

PRISM on Contact Lenses
Also try with other rules packages

49

50

26

51

Separate and conquer rule learning

• Rule learning methods like the one PRISM employs (for
each class) are called separate-and-conquer algorithms:
• First, identify a useful rule

• Then, separate out all the instances it covers

• Finally, “conquer” the remaining instances

• Difference to divide-and-conquer methods:
• Subset covered by a rule does not need to be explored any

further

52

Mining association rules

• Naïve method for finding association rules:
• Use separate-and-conquer method

• Treat every possible combination of attribute values as a
separate class

• Two problems:
• Computational complexity

• Resulting number of rules (which would have to be pruned on
the basis of support and confidence)

• It turns out that we can look for association rules with
high support and accuracy directly

51

52

27

53

Item sets: the basis for finding rules

• Support: number of instances correctly covered by
association rule
• The same as the number of instances covered by all tests in the rule

(LHS and RHS!)

• Item: one test/attribute-value pair
• Item set : all items occurring in a rule
• Goal: find only rules that exceed pre-defined support

• Do it by finding all item sets with the given minimum support and
generating rules from them!

54

Weather data

NoTrueHighMildRainy

YesFalseNormalHotOvercast

YesTrueHighMildOvercast

YesTrueNormalMildSunny

YesFalseNormalMildRainy

YesFalseNormalCoolSunny

NoFalseHighMildSunny

YesTrueNormalCoolOvercast

NoTrueNormalCoolRainy

YesFalseNormalCoolRainy

YesFalseHighMildRainy

YesFalseHighHot Overcast

NoTrueHighHotSunny

NoFalseHighHotSunny

PlayWindyHumidityTempOutlook

53

54

28

55

Item sets for weather data

…………

Outlook = Rainy
Temperature = Mild
Windy = False
Play = Yes (2)

Outlook = Sunny
Humidity = High
Windy = False (2)

Outlook = Sunny
Humidity = High (3)

Temperature = Cool (4)

Outlook = Sunny
Temperature = Hot
Humidity = High
Play = No (2)

Outlook = Sunny
Temperature = Hot
Humidity = High (2)

Outlook = Sunny
Temperature = Hot (2)

Outlook = Sunny (5)

Four-item setsThree-item setsTwo-item setsOne-item sets

• Total number of item sets with a minimum support of at
least two instances: 12 one-item sets, 47 two-item sets, 39
three-item sets, 6 four-item sets and 0 five-item sets

56

Generating rules from an item set

• Once all item sets with the required minimum support have
been generated, we can turn them into rules

• Example 4-item set with a support of 4 instances:

• Seven (2N-1) potential rules:

Humidity = Normal, Windy = False, Play = Yes (4)

4/4
4/6
4/6
4/7
4/8
4/9

4/12

If Humidity = Normal and Windy = False then Play = Yes
If Humidity = Normal and Play = Yes then Windy = False
If Windy = False and Play = Yes then Humidity = Normal
If Humidity = Normal then Windy = False and Play = Yes
If Windy = False then Humidity = Normal and Play = Yes
If Play = Yes then Humidity = Normal and Windy = False
If True then Humidity = Normal and Windy = False

and Play = Yes

55

56

29

57

Rules for weather data

• All rules with support > 1 and confidence = 100%:

• In total:
3 rules with support four
5 with support three

50 with support two

100%2 Humidity=HighOutlook=Sunny Temperature=Hot58

............

100%3 Humidity=NormalTemperature=Cold Play=Yes4

100%4 Play=YesOutlook=Overcast3

100%4 Humidity=NormalTemperature=Cool2

100%4 Play=YesHumidity=Normal Windy=False1

Association rule Conf.Sup.

58

Example rules from the same item set

• Item set:

• Resulting rules (all with 100% confidence):

• We can establish their confidence due to the following
“frequent” item sets:

Temperature = Cool, Humidity = Normal, Windy = False, Play = Yes (2)

Temperature = Cool, Windy = False Humidity = Normal, Play = Yes

Temperature = Cool, Windy = False, Humidity = Normal Play = Yes

Temperature = Cool, Windy = False, Play = Yes Humidity = Normal

Temperature = Cool, Windy = False (2)
Temperature = Cool, Humidity = Normal, Windy = False (2)
Temperature = Cool, Windy = False, Play = Yes (2)

57

58

30

Weka Class Association Rules

Weka Class Association Rules

59

60

31

61

Generating item sets efficiently

• How can we efficiently find all frequent item sets?
• Finding one-item sets easy
• Idea: use one-item sets to generate two-item sets, two-item sets

to generate three-item sets, …
• If (A B) is a frequent item set, then (A) and (B) have to be frequent item sets

as well!
• In general: if X is a frequent k-item set, then all (k-1)-item subsets of X are

also frequent

• Compute k-item sets by merging (k-1)-item sets

62

Example

• Given: five frequent three-item sets

(A B C), (A B D), (A C D), (A C E), (B C D)

• Lexicographically ordered!

• Candidate four-item sets:

(A B C D) OK because of (A C D) (B C D) (A B C)

(A C D E) Not OK because of (C D E)

• To establish that these item sets are really frequent, we
need to perform a final check by counting instances

• For fast look-up, the (k –1)-item sets are stored in a
hash table

61

62

32

63

Algorithm for finding item sets

64

Association rules: discussion

• Above method makes one pass through the data for each
different item set size
• Another possibility: generate (k+2)-item sets just after (k+1)-item

sets have been generated
• Result: more candidate (k+2)-item sets than necessary will be

generated but this requires less passes through the data
• Makes sense if data too large for main memory

• Practical issue: support level for generating a certain
minimum number of rules for a particular dataset
• This can be done by running the whole algorithm

multiple times with different minimum support levels
• Support level is decreased until a sufficient number of

rules has been found

63

64

33

65

Linear models: linear regression

• Work most naturally with numeric attributes
• Standard technique for numeric prediction

• Outcome is linear combination of attributes

• Weights are calculated from the training data
• Predicted value for first training instance a(1)

(assuming each instance is extended with a constant attribute with value 1)

66

Minimizing the squared error

• Choose k +1 coefficients to minimize the squared error on
the training data

• Squared error:

• Coefficients can be derived using standard matrix operations
• Can be done if there are more instances than attributes

(roughly speaking)
• Minimizing the absolute error is more difficult

An example: http://faculty.cas.usf.edu/mbrannick/regression/Part3/Reg2.html

65

66

34

67

Classification

• Any regression technique can be used for classification
• Training: perform a regression for each class, setting the output to 1

for training instances that belong to class, and 0 for those that don’t

• Prediction: predict class corresponding to model with largest output
value (membership value)

• For linear regression this method is also known as multi-
response linear regression

• Problem: membership values are not in the [0,1] range.
• Membership values can fall outside range
• So they cannot be considered proper probability estimates
• In practice, they are often simply clipped into the [0,1]

range and normalized to sum to 1

68

Linear models: logistic regression

• Can we do better than using linear regression for
classification?

• Yes, we can, by applying logistic regression
• Logistic regression builds a linear model for a transformed

target variable
• Assume we have two classes
• Logistic regression replaces the target (probability)

by this target (odds)

• This logit transformation maps [0,1] to (- , +), i.e., the new
target values are no longer restricted to the [0,1] interval

67

68

35

69

Logistic regression explained

See for details: https://data.princeton.edu/wws509/notes/c3.pdf

• In the contraceptive use data
there are 507 users of
contraception among 1607
women.

• So we estimate the probability as
507/1607 = 0.316.

• The odds are 507/1100 or 0.461 to
one, so non-users outnumber
users roughly two to one.

• The logit is log(0.461) = −0.775.

70

Logit transformation

• Resulting class probability model:

69

70

36

71

Example logistic regression model

• Model with w0 = -1.25 and w1 = 0.5:

• Parameters are found from training data using maximum
likelihood

72

Linearly separable data
• A dataset is said to be linearly separable if it is possible to draw a line that

can separate points belonging to different classes from each other.

Illustrative figures taken from:
https://www.commonlounge.com/discussion/6caf49570d9c4d0789afbc544b32cdbf

• Linearly non-separable data:

71

72

37

73

Linearly separable data
• A dataset is said to be linearly separable if it is possible to draw a line that

can separate points belonging to different classes from each other.

Illustrative figures taken from:
https://www.commonlounge.com/discussion/6caf49570d9c4d0789afbc544b32cdbf

Algebraic definition:
• Algebraically, the separator is a linear function, i.e. if data point x is given by

(x1, x2), when the separator is a function f(x) = w1*x1 + w2*x2 + b
• All points for which f(x) = 0, are on the separator line. All points for which f(x) >

0 are on one side of the line, and all points for which f(x) < 0 are on the other
side.

74

Linear models are hyperplanes

• Decision boundary for two-class logistic regression is where
probability equals 0.5:

which occurs when
• Thus logistic regression can only separate data that can be

separated by a hyperplane

73

74

38

75

Linear models: the perceptron

• Observation: we do not actually need probability estimates if
all we want to do is classification

• Different approach: learn separating hyperplane directly
• Let us assume the data is linearly separable
• In that case there is a simple algorithm for learning a

separating hyperplane called the perceptron learning rule
• Hyperplane:

where we again assume that there is a constant attribute with
value 1 (bias)

• If the weighted sum is greater than zero we predict the first
class, otherwise the second class

76

Perceptron as a neural network

Input
layer

Output
layer

75

76

39

If there are two vectors of
size n+1, w and x, the dot product of these
vectors (w.x) could be computed as follows:

The algorithm
Set all weights to zero
Until all instances in the training data are classified correctly

For each instance I in the training data
If I is classified incorrectly by the perceptron

If I belongs to the first class add it to the weight vector
else subtract it from the weight vector

Multilayer Perceptron as a neural network – IRIS dataset

77

78

40

79

• Clustering techniques apply when there is no class to be
predicted: they perform unsupervised learning

• Aim: divide instances into “natural” groups
• As we have seen, clusters can be:

• disjoint vs. overlapping
• deterministic vs. probabilistic
• flat vs. hierarchical

• We will look at a classic clustering algorithm called k-means
• k-means clusters are disjoint, deterministic, and flat

Clustering

Euclidian distance formula:

Manhattan distance formula:

80

• Step 1: Choose k random cluster centers
• Step 2: Assign each instance to its closest cluster center based on

Euclidean distance
• Step 3: Recompute cluster centers by computing the average

(aka centroid) of the instances pertaining to each cluster
• Step 4: If cluster centers have moved, go back to Step 2
• This algorithm minimizes the squared Euclidean distance of the

instances from their corresponding cluster centers
• Determines a solution that achieves a local minimum of the squared

Euclidean distance

• Equivalent termination criterion: stop when assignment of
instances to cluster centers has not changed

The k-means algorithm

79

80

41

81

The k-means algorithm: example

82

Discussion

• Algorithm minimizes squared distance to cluster centers
• Result can vary significantly

• based on initial choice of seeds
• Can get trapped in local minimum

• Example:

• To increase chance of finding global optimum: restart with
different random seeds

• Can be applied recursively with k = 2

instances

initial cluster
centres

81

82

42

83

Hierarchical clustering

• Bisecting k-means performs hierarchical clustering in a top-down
manner

• Standard hierarchical clustering performs clustering in a bottom-
up manner; it performs agglomerative clustering:
• First, make each instance in the dataset into a trivial mini-cluster
• Then, find the two closest clusters and merge them; repeat
• Clustering stops when all clusters have been merged into a single cluster

• Outcome is determined by the distance function that is used:
• Single-linkage clustering: distance of two clusters is measured by finding

the two closest instances, one from each cluster, and taking their distance
• Complete-linkage clustering: use the two most distant instances instead
• Average-linkage clustering: take average distance between all instances
• Centroid-linkage clustering: take distance of cluster centroids
• Group-average clustering: take average distance in merged clusters
• Ward’s method: optimize k-means criterion (i.e., squared distance)

84

Example: hierarchical clustering

83

84

43

85

Hierarchical Clustering Demo

•Open glass.arff.
•Normalize numeric attributes.
• Data normalization is the process of rescaling one or more

attributes to the range of 0 (smallest) to 1 (largest).
• Normalization is a good technique to use when features have

different ranges.
• E.g. age ranges from 0–100, income ranges from 0 - 20 mn or

higher. Due to larger values, income will influence the result.
• You can normalize all of the attributes in your dataset with

Weka by choosing the Normalize filter and applying it to your
dataset.

• Filter -> unsupervised -> attribute -> normalize.

86

Hierarchical Clustering Demo

85

86

44

87

Hierarchical Clustering Demo

88

Hierarchical Clustering Demo

87

88

45

89

Some final comments on the basic methods

• Bayes’ rule stems from his “Essay towards solving a problem
in the doctrine of chances” (1763)
• Difficult bit in general: estimating prior probabilities (easy in the case

of naïve Bayes)

• Extension of naïve Bayes: Bayesian networks
• The algorithm for association rules we discussed is called

APRIORI; many other algorithms exist
• Minsky and Papert (1969) showed that linear classifiers have

limitations, e.g., can’t learn a logical XOR of two attributes
• But: combinations of them can (this yields multi-layer neural nets)

89

