

Evaluation: the key to success

- How predictive is the model we have learned?
- Error on the training data is *not* a good indicator of performance on future data
 - Otherwise 1-NN would be the optimum classifier!
- Simple solution that can be used if a large amount of (labeled) data is available:
 - Split data into training and test set
- · However: (labeled) data is usually limited
 - More sophisticated techniques need to be used

Aside: the kappa statistic • Two confusion matrices for a 3-class problem: actual predictor (left) vs. random predictor (right)											
	Predicted Class						Predicted Class				
^(A) Actual class	a b c total	a 88 14 18 <i>120</i>	b 10 40 10 60	c 2 6 12 <i>20</i>	total 100 60 40	(B) Actual Class	a b c total	a 60 36 24 <i>120</i>	b 30 18 12 60	c 10 6 4 20	total 100 60 40
 Number of successes: sum of entries in diagonal (D) Kappa statistic: (success rate of actual predictor - success rate of random predictor) / (1 - success rate of random predictor) Measures relative improvement on random predictor: 1 means perfect accuracy, 0 means we are doing no better than random 											

Classification with costs									
• Two cost matrices:									
	Predicted Class						Predicted Class		
(A) Actual class	Yes No	Yes 0 1	<i>No</i> 1 0		(B) Actual class	a b c	a 0 1 1	b 1 0 1	c 1 1 0
• In cost-se success r • Cost is	ensitive ate is r given by	e evalu eplace approp	ation c d by av riate en	of cla vera _§ try in	ssification me ge cost per pre the cost matrix	thod: dictio	5, on	33	

Summary of some measures							
	Domain	Plot	Explanation				
Lift chart	Marketing	TP Subset size	TP (TP+FP)/(TP+FP+TN +FN)				
ROC curve	Communications	TP rate FP rate	TP/(TP+FN) FP/(FP+TN)				
Recall- precision curve	Information retrieval	Recall Precision	TP/(TP+FN) TP/(TP+FP)				
			41				

Elegance vs. errors

- Theory 1: very simple, elegant theory that explains the data almost perfectly
- Theory 2: significantly more complex theory that reproduces the data without mistakes
- Theory 1 is probably preferable
- Classical example: Kepler's three laws on planetary motion
 - Less accurate than Copernicus's latest refinement of the Ptolemaic theory of epicycles on the data available at the time

47