

Categorical Variables

- Also known as "qualitative."
- Dichotomous (binary) two levels
 - Dead/alive
 - Treatment/placebo
 - Disease/no disease
 - Exposed/Unexposed
 - Heads/Tails
 - Pulmonary Embolism (yes/no)
 - Male/female

3

Categorical Variables

- Nominal variables Named categories
 Order doesn't matter!
 - The blood type of a patient (O, A, B, AB)
 - Marital status
 - Occupation

Categorical Variables

- Ordinal variable Ordered categories. Order matters!
 - Staging in breast cancer as I, II, III, or IV
 - Birth order—1st, 2nd, 3rd, etc.
 - Letter grades (A, B, C, D, F)
 - Ratings on a scale from 1-5
 - Ratings on: always; usually; many times; once in a while; almost never; never
 - Age in categories (10-20, 20-30, etc.)
 - Shock index categories (Kline et al.)

5

Quantitative Variables

- Numerical variables; may be arithmetically manipulated.
 - Counts
 - Time
 - Age
 - Height

Quantitative Variables

- <u>Discrete Numbers</u> a limited set of distinct values, such as whole numbers.
 - Number of new AIDS cases in CA in a year (counts)
 - Years of school completed
 - The number of children in the family (cannot have a half a child!)
 - The number of deaths in a defined time period (cannot have a partial death!)
 - Roll of a die

7

Quantitative Variables

- <u>Continuous Variables</u> Can take on any number within a defined range.
 - Time-to-event (survival time)
 - Age
 - Blood pressure
 - Serum insulin
 - Speed of a car
 - Income
 - Shock index (Kline et al.)

Looking at Data

- ✓ How are the data distributed?
 - Where is the center?
 - What is the range?
 - What's the shape of the distribution (e.g., Gaussian, binomial, exponential, skewed)?
- ✓ Are there "outliers"?
- ✓ Are there data points that don't make sense?

9

The first rule of statistics: USE COMMON SENSE!

90% of the information is contained in the graph.

Frequency Plots (univariate)

Categorical variables

Bar Chart

Continuous variables

- Box Plot
- Histogram

11

Bar Chart

- Used for categorical variables to show frequency or proportion in each category.
- Translate the data from frequency tables into a pictorial representation...

Box plot and histograms: for continuous variables

 To show the <u>distribution</u> (shape, center, range, variation) of continuous variables.

15

Histogram

200.0

2 bins (too little detail)

133.366.7-

SI

0.7

1.3

2.0

20

0.0

Measures of central tendency

- Mean
- Median
- Mode

23

Central Tendency

Mean – the average; the balancing point

calculation: the sum of values divided by the sample size

In math shorthand:

$$\overline{X} = \frac{\sum_{i=1}^{n} X}{n} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

Mean: example

Some data:

Age of participants: 17 19 21 22 23 23 23 38

$$\overline{X} = \frac{\sum_{i=1}^{n} X_{i}}{n} = \frac{17 + 19 + 21 + 22 + 23 + 23 + 23 + 38}{8} = 23.25$$

25

Central Tendency

■ Median — the exact middle value

Calculation:

- If there are an odd number of observations, find the middle value
- If there are an even number of observations, find the middle two values and average them.

29

Median: example

Some data:

Age of participants: 17 19 21 22 23 23 38

Median = (22+23)/2 = 22.5

Central Tendency

Mode – the value that occurs most frequently

33

Mode: example

Some data:

Mode = 23 (occurs 3 times)

Measures of Variation/Dispersion

- Range
- Percentiles/quartiles
- Interquartile range
- Standard deviation/Variance

35

Range

 Difference between the largest and the smallest observations.

- The first quartile, Q₁, is the value for which 25% of the observations are smaller and 75% are larger
- Q₂ is the same as the median (50% are smaller, 50% are larger)
- Only 25% of the observations are greater than the third quartile

Interquartile Range

 Interquartile range = 3rd quartile − 1st quartile = Q₃ − Q₁

39

Variance

 Average (roughly) of squared deviations of values from the mean

$$S^{2} = \frac{\sum_{i}^{n} (x_{i} - \overline{X})^{2}}{n - 1}$$

41

Why squared deviations?

- Adding deviations will yield a sum of 0.
- Absolute values are tricky!
- Squares eliminate the negatives.
- Result:
 - Increasing contribution to the variance as you go farther from the mean.

Standard Deviation

- Most commonly used measure of variation
- Shows variation about the mean
- Has the same units as the original data

$$S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{X})^2}{n-1}}$$

43

Calculation Example: Sample Standard Deviation

Age data (n=8): 17 19 21 22 23 23 23 38

$$n = 8$$
 Mean = $X = 23.25$

$$S = \sqrt{\frac{(17 - 23.25)^2 + (19 - 23.25)^2 + \dots + (38 - 23.25)^2}{8 - 1}}$$
$$= \sqrt{\frac{280}{7}} = 6.3$$

Symbol Clarification

- S = <u>Sample</u> standard deviation (example of a "sample statistic")
- σ = Standard deviation of the entire population (example of a "population parameter") or from a theoretical probability distribution
- X = <u>Sample</u> mean
- μ = Population or theoretical mean

**The beauty of the normal (bell) curve:

No matter what μ and σ are, the area between μ - σ and μ + σ is about 68%; the area between μ -2 σ and μ +2 σ is about 95%; and the area between μ -3 σ and μ +3 σ is about 99.7%. Almost all values fall within 3 standard deviations.

47

Summary of Symbols

- S²= Sample variance
- S = Sample standard dev
- σ^2 = Population (true or theoretical) variance
- σ = Population standard dev.
- \overline{X} = Sample mean
- µ = Population mean
- IQR = interquartile range (middle 50%)

49

Examples of bad graphics

- http://www.math.yorku.ca/SCS/Gallery/
- Kline et al. Annals of Emergency Medicine 2002; 39: 144-152.
- Statistics for Managers Using Microsoft® Excel 4th Edition, 2004 Prentice-Hall
- Tappin, L. (1994). "Analyzing data relating to the Challenger disaster". Mathematics Teacher, 87, 423-426
- Tufte. The Visual Display of Quantitative Information. Graphics Press, Cheshire, Connecticut, 1983.
- Visual Revelations: Graphical Tales of Fate and Deception from Napoleon Bonaparte to Ross Perot Wainer, H. 1997.