
Addison-Wesley’s
JavaScript Reference Card

Kathleen M. Goelz and Carol J. Schwartz, Rutgers University

,!7IA3C1-dcahfj!:t;K;k;K;k
ISBN 0-321-32075-1

Javascript: A scripting language designed to be integrated
into HTML code to produce enhanced, dynamic, interac-
tive web pages.

DATA TYPES

Definition: The classification of values based on the specific
categories in which they are stored.

Primitive Types: String, Boolean, Integer, Floating Point,
Null, Void

Composite Types: Object, Array, Function. Composite data
types are in separate sections of the code.

NUMERIC
Integer: Positive or negative numbers with no fractional
parts or decimal places.

Floating Point: Positive or negative numbers that contain a
decimal point or exponential notations.

String: A sequence of readable characters or text, surround-
ed by single or double quotes.

Boolean: The logical values True/False, etc. used to com-
pare data or make decisions.

Null: The variable does not have a value; nothing to report.
Null is not the same as zero, which is a numeric value.

Casting: Moving the contents of a variable of one type to a
variable of a different type. You don’t move the contents to
a different variable; it stays in the same variable but the
data type is changed or “re-cast”.

VARIABLES

Definition: A placeholder for storing data. In JavaScript, a
declaration statement consists of the reserved word var and
the name (identifier) of one or more variables.

Format:

var variable_name
[var command is used to declare (create) variables]

Examples:

var myHouseColor

var myAddress

var vacation_house, condominium,
primaryResidence

Rules for Naming Variables:
1. Variables cannot be reserved words.

2. Variables must begin with a letter or underscore and
cannot begin with symbols, numbers, or arithmetic
notations.

3. Spaces cannot be included in a variable name.

Hints:
1. Although variables in JavaScript can be used without

being declared, it is good programming practice to
declare (initialize), all variables.

2. Variable names are case sensitive; for example X does
not equal x.

javascript_reference_card.qxd 8/13/04 11:41 AM Page 1

2

IF-ELSE Statement: A conditional branching statement
that includes a path to follow if the condition is TRUE and
a path to follow if the condition is FALSE.

Format:

if (condition) {
statements if condition is TRUE;

}
else {

statements if condition is FALSE;
}

Example:

if (score >= 65) {
grade = “Pass”;
message = “Congratulations”;

}
else {

grade = “Fail”
message = “Try again”;

}

IF-ELSE IF Statement: A conditional branching statement
that allows for more than two possible paths. The first time
a true condition is encountered, the statement is executed
and the remaining conditions will not be tested.

Format:

if (condition) {
Statements if condition is TRUE;

}
else if (condition) {

Statements if condition is TRUE;
}
else {

Statements if no prior condition is
true;

}

INITIALIZING VARIABLES
Use the declaration statement to assign a value to the vari-
able. The value is on the right of the equal sign; the variable
is on the left.

Format:

var variable_name = value

Examples:

var myHouseColor = “yellow”
[literal string value yellow assigned to variable

myHouseColor]

var myAddress = 473
[numeric value 473 assigned to variable myAddress]

var bookTitle = “Time Capsule”, cost =
28.95, publisher = “Tucker Bay”

[multiple variables can be assigned in one statement]

DECISION MAKING AND
CONTROL STRUCTURES

Definition: Statements and structures used to change the
order in which computer operations will occur.

Types:

Conditional Branching IF, IF-ELSE, IF-ELSE IF, SWITCH,
WHILE, DO, FOR

CONDITIONALS
IF Statement: A conditional branching statement used to
determine whether a stated condition is TRUE.

Format:

if (condition) {
statements if condition is TRUE

}

Example:

if (score >= 65”) {
grade = “Pass”;
message = “Congratulations”;

}

javascript_reference_card.qxd 8/13/04 11:41 AM Page 2

3

Example:

if (score>=90) {
grade=”A”;

}
else if (score>=80) {

grade=”B”;
}
else if (score>=70) {

grade=”C”;
}
else if (score>=65) {

grade=”D”;
}
else {

grade=”F”;
}

SWITCH Statement: An alternative to the IF-ELSE IF
statement for handling multiple options. Compares the
expression to the test values to find a match.

Format:

switch (expression or variable name) {

case label:

statements if expression matches
this label;

break;

case label:

statements if expression matches
this label;

break;

default:

statements if expression does not
match any label;

break;

}

Example:

switch (colorchoice) {
case “red”:
document.bgColor=”red”;
break;

case “blue”:
document.bgColor=”blue”;
break;

default:
document.bgColor=”white”;
break;

}

LOOPS
Loops cause a segment of code to repeat until a stated
condition is met. You can use any loop format for any
type of code

FOR LOOP:

Format:

For (intialize; conditional test;
increment/decrement) {

Statements to execute;
}

Example:

For (var i=0; i<=10; i++) {
document.write (“This is line “ + i);

}

DO/WHILE LOOP:

Format:

do {
Statements to execute;

}
while (condition);

Example:

var i=0;
do {

document.write (“This is line “ + i);
i++;

}
while (i <=10);

javascript_reference_card.qxd 8/13/04 11:41 AM Page 3

Initializing Arrays:

Array items can be treated as simple variables:

days[0] = “Sunday”;
days[1] = “Monday”;
etc.

STRING OBJECT
Definition: String object is created by assigning a string to a
variable, or by using the new object constructor.

Example:

var name = “Carol”;
var name = new String(“Carol”);

Properties:

Length: returns the number of characters in the
string

Prototype: allows the user to add methods and
properties to the string

Methods:

String formatting methods (similar to HTML formatting tags)
String.big
String.blink
String.italics

Substring methods (allow user to find, match, or change
patterns of characters in the string)

indexOf()
charAt()
replace()

MATH OBJECT
Definition: Math object allows arithmetic calculations not
supported by the basic math operators. Math is a built-in
object that the user does not need to define.

Examples:

Math.abs(number) returns absolute value of
the numeric argument

Math.cos(number) returns the cosine of the
argument, in radians

Math.round(number) rounds number to the
nearest integer

DATE/TIME OBJECTS
Date object provides methods for getting or setting infor-
mation about the date and time.

Note: Dates before January 1, 1970 are not supported.

4

WHILE LOOP:

Format:

while (condition) {
Statements;
Increment/decrement;

}

Example:

var i = 0;
while (i<=10) {

document.write (“This is line “ + i);
i++;

}

Hint: Watch out for infinite loops, which do not have a
stopping condition or have a stopping condition that will
never be reached.

OBJECTS

Definition: Objects are a composite data type which con-
tain properties and methods. JavaScript contains built-in
objects and allows the user to create custom objects.

Creating Objects: Use the new constructor

var X = new Array()

Examples:

date, time, math, strings, arrays

ARRAY OBJECT
Definition: Array object is a variable that stores multiple val-
ues. Each value is given an index number in the array and
each value is referred to by the array name and the
index number. Arrays, like simple variables, can hold any
kind of data. You can leave the size blank when you create
an array. The size of the array will be determined by the
number of items placed in it.

Format:

var arrayname = new Array(size)

Hint: When you create an array, you create a new instance
of the array object. All properties and methods of the array
object are available to your new array.

Example:

var days = new Array (7)
This creates an array of seven elements using the array
constructor.
The first item is days[0], the last item is days[6].

javascript_reference_card.qxd 8/13/04 11:41 AM Page 4

5

FUNCTIONS

Definition: A pre-written block of code that performs a
specific task. Some functions return values; others perform
a task like sorting, but return no value. Function names
follow the same rules as variables names. There may or
may not be an argument or parameter in the parenthesis,
but the parenthesis has to be there.

User-defined Functions:

Example:

ParseInt() or ParseFloat() convert a string to a
number.

To create a function:

Format:

function name_of_function (arguments) {
statements to execute when
function is called;

}

Example:

function kilosToPounds (){
pounds=kilos*2.2046;

}

This new function takes the value of the variable kilos,
multiplies it by 2.2046, and assigns the result to the vari-
able pounds.

To call a function: Give the name of the function followed
by its arguments, if any

ParseInt(X); converts the data stored in the variable
X into a numeric value.

kilosToPounds(17); converts 17 kilos to the same
mass in pounds, returning the value 37.4782.

METHODS

Definition: A special kind of function used to describe or
instruct the way the object behaves. Each object type in
JavaScript has associated methods available.

Examples:

array.sort();
document.write();
string.length();

Calling: To call or use a method, state the method name
followed by its parameters in parentheses.

Example:

document.write(“Hello, world!”);

PUTTING IT TOGETHER:
JAVASCRIPT AND HTML
ON THE WEB

Cookies: Text-file messages stored by the browser on the
user’s computer

Purpose: To identify the user, store preferences, and present
customized information each time the user visits the page

Types:

Temporary (transient, session) — stored in temporary
memory and available only during active browser session

Persistent (permanent, stored) — remain on user’s comput-
er until deleted or expired

Browser Detection: A script written to determine which
browser is running; determine if the browser has the capabili-
ties to load the webpage and support the javascript code; and,
if needed, load alternate javascript code to match the browser
and platform.

Sniffing: A script written to determine whether a specific
browser feature is present; i.e., detecting the presence of
Flash before loading a webpage.

Event Handling: Use HTML event attributes (mouseover,
mouse click, etc.) and connect event to a JavaScript function
called an event handler

javascript_reference_card.qxd 8/13/04 11:41 AM Page 5

abstract
boolean
break
byte
case
catch
char
class
const
continue
debugger
default
delete
do
double

else
enum
export
extends
false
final
finally
float
for
function
goto
if
implements
import
in

instanceof
int
interface
long
native
new
null
package
private
protected
public
return
shor
static
super

switch
synchronized
this
throw
throws
transient
true
try
typeof
var
void
volatile
while
with

6

COMPARISON
== Returns true if the operands are equal
!= Returns true if the operands are not equal
=== Returns true if the operands are equal and the

same data type
!== Returns true if the operands are not equal and/or

not the same data type
> Returns true if the first operand is greater than

the second
>= Returns true if the first operand is greater than or

equal to the second
< Returns true if the first operand is less than the

second
<= Returns true if the first operand is less than or

equal to the second

ASSIGNMENT
= Assigns the value of the seond operand to the

first operand
+= Adds two numeric operands and assigns the

result to the first operand
– = Subtracts the second operand from the first, and

assigns the result to the first
*= Multiplies two operands, assigns the result to the

first
/ = Divides the first operand by the second, assigns

the result to the first
%= Finds the modulus of two numeric operands, and

assigns the result to the first

RESERVED WORDS

OPERATORS

ARITHMETIC
+ addition adds two numbers
– subtraction subtracts one number from

another
* multiplication multiplies two numbers
/ division divides one number by another
% modulus returns the integer remainder

after dividing two numbers
+ + increment adds one to a numeric variable
— decrement subtracts one from a numeric

variable

STRING
+ concatenation concatenates or joins two

strings or other elements
+= concatenation/ concatenates two string

assignment variables and assigns the
result to the first variable

LOGICAL
&& logical AND Compares two operands;

returns true if both are true,
otherwise returns false

|| logical OR Compares two operands;
returns true if either operand
is true, otherwise returns false

! logical NOT Returns false if its operand
can be converted to true,
otherwise returns false

javascript_reference_card.qxd 8/13/04 11:41 AM Page 6

JavaScript Quick Reference Card1.03

Copyright©, 2007-2008 BrandsPatch LLC

http://www.explainth.at

Color key overleaf

Code Structure
var ...
//Global variable declarations
function funcA([param1,param2,...])
{
 var ...
 //Local variable declarations – visible in nested
functions

 [function innerFuncA([iparam1,iparam2...])
 {
 var ...
 //Variables local to innerFuncA
 //your code here
 }]

aName='ExplainThat!';
//implicit global variable creation
//your code here
}

Nomenclature Rules
Function and variable names can consist of any
alphanumeric character. $ and _ are allowed. The first
character cannot be numeric. Many extended ASCII
characters are allowed. There is no practical limit on
name length. Names are case-sensitive.

If two or more variables or functions or a variable & a
function are declared with the same name the last
declaration obliterates all previous ones. Using a
keyword as a variable or function name obliterates that
keyword.

Visibility & Scope
Assignments without the use of the var keyword result
in a new global variable of that name being created.

Variables declared with the var keyword outwith the
body of a function are global. Variables declared with
the var keyword inside the body of a function are local
to that function. Local variables are visible to all nested
functions.

Local entities hide globals bearing the same name.
Variable Types

string: var s = 'explainthat' or “explainthat”
number: var n = 3.14159, 100, 0...
boolean: var flag = false or true
object: var d = new Date();
function: var Greet = function sayHello() {alert('Hello')}
JavaScript is a weakly typed language – i.e. a simple
assignment is sufficient to change the variable type. The
typeof keyword can be used to check the current
variable type.

Special Values
The special values false, Infinity, NaN, null, true &
undefined are recognized. null is an object. Infinity
and NaN are numbers.

Operators
Operator Example Result

+ 3 + 2
'explain' + 'that'

5
explainthat

- 3 - 2 -1

* 3*2 6

/ 3/2 1.5

% 3%2 1

++ i = 2;
i++1, ++i2

3

-- i = 2;
i--1, --i2

1

 ==
 ==

3 = '3'
2 == 3

true
false

 === 3 === 3
3 === '3'

true
false

< 2 < 3
'a' < 'A'

true
false

<= 2 <= 3 true

> 2 > 3 false

>= 2 > 3 false

 = i = 2 i is assigned
the value 2

+= i+=1 3

-= i-=1 2

i*= i*=3 6

/= i/=2 3

%= i%=2 1

i = 2;j = 5;

&& (AND) (i <= 2) && (j < 7) true

|| (OR) (i%2 > 0) || (j%2 == 0) false

! (NOT) (i==2) && !(j%2 == 0) true

i = 2;j = 7;

& (bitwise) i & j 2

| (bitwise) i|j 7

^(XOR) i^j 5

<< 2<<1 4

>> 2>>1 1

>>> i=10 (binary 1010)
i>>>2

23

Internal Functions
decodeURI - reverses encodeURI
decodeURIComponent - reverses encodeURI...
encodeURI – encodes everything except
:/?&;,~@&=$+=_.*()# and alphanumerics.
encodeURIComponent – encodes everything except
_.-!~*() and alphaumerics.
escape – hexadecimal string encoding. Does not
encode +@/_-.* and alphanumerics.
unescape – reverses escape
eval – evaluates JavaScript expressions
isNaN – true if the argument is not a number.
isFinite – isFinite(2/0) returns false
parseInt - parseInt(31.5°) returns 31
parseFloat - parseFloat(31.5°) returns 31.5

Array Object
length – number of elements in the array
concat – concatenates argument, returns new array.
join – returns elements as a string separated by
argument (default is ,)
pop – suppress & return last element
push – adds new elements to end of array & returns
new length.
reverse – inverts order of array elements
shift – suppress & return first element

slice – returns array slice. 1st arg is start position. 2nd arg
is last position + 1
sort – alphanumeric sort if no argument. Pass sort
function as argument for more specificity.
splice – discard and replace elements
unshift – append elements to start & return new length

Date Object
get#
getUTC#
set#
setUTC#
where # is one of Date, Day, FullYear, Hours,
Milliseconds, Minutes, Month, Seconds, Time,
TimezoneOffset

toDateString – the date in English.
toGMTString – the date & time in English.
toLocaleDateString – the date in the locale language.
toLocaleString – date & time in the locale language.
toLocaleTimeString – time in the locale language.
toTimeString – time in English.
toUTCString – date & time in UTC, English
valueOf – milliseconds since midnight 01 January 1970,
UTC

Math Object
E, LN10, LN2, LOG10E, LOG2E, PI, SQRT1_2, SQRT2
abs – absolute value
#(n) - trigonometric functions
a#(n) - inverse trigonometric functions
where # is one of cos, sin or tan
ceil(n) – smallest whole number >= n
exp(n) – returns en

floor(n) – biggest whole number <= n
log(n) – logarithm of n to the base e
max(n1,n2) – bigger of n1 and n2
min(n1,n2) – smaller of n1 and n2
pow(a,b) - ab
random – random number between 0 and 1
round(n) – n rounded down to closest integer
sqrt(n) – square root of n

Number Object
MAX_VALUE - ca 1.7977E+308
MIN_VALUE – ca 5E-324
NEGATIVE_INFINITY, POSITIVE_INFINITY
n.toExponential(m) – n in scientific notation with m
decimal places.
n.toFixed() - n rounded to the closest whole number.
n.toPrecision(m) – n rounded to m figures.
Hexadecimal numbers are designated with the prefix
0x or 0X. e.g. 0xFF is the number 255.

String Object
length – number of characters in the string
s.charAt(n) – returns s[n]. n starts at 0
s.charCodeAt(n) – Unicode value of s[n]
s.fromCharCode(n1,n2..) - string built from Unicode
values n1, n2...
s1.indexOf(s2,n) – location of s2 in s1 starting at
position n
s1.lastIndexOf(s2) – location of s2 in s1 starting from
the end
s.substr(n1, n 2) – returns substring starting from n1 upto
character preceding n2. No n2 = extract till end. n1 < 0 =
extract from end.
s.toLowerCase() - returns s in lower case characters
s.toUpperCase() - care to guess?

http://www.explainth.at/

JavaScript Quick Reference Card1.03

Escape Sequences
\n - new line, \r - carriage return, \t – tab character,
\\ - \ character, \' - apostrophe, \'' - quote
\uNNNN – Unicode character at NNNN
 e.g. \u25BA gives the character ►

JavaScript in HTML
External JavaScript
<script type=”text/javascript” defer=”defer”
src=”/scripts/explainthat.js”></script>

Inline JavaScript
<script type=”text/javascript”>
//your code here
</script>

Comments
/* Comments spanning multiple lines */
// Simple, single line, comment

Conditional Execution
if (Condition) CodeIfTrue;else CodeIfFalse4

Multiline CodeIf# must be placed in braces, {}
switch (variable)
{
 case Value1:Code;
 break;
 case Value2:Code;
 break;

 default:Code;
}
variable can be boolean, number, string or even date.
(condition)?(CodeIfTrue):(CodeIfFalse)
Parentheses are not necessary but advisable

Error Handling
Method 1:The onerror event
<script type=”text/javascript”>
function whenError(msg,url,lineNo){
 //use parameters to provide meaningful messages

}
window.onerror = whenError
</script>
Place this code in a separate <script>..</script> tag
pair to trap errors occurring in other scripts. This
technique blocks errors without taking corrective action.

Method 2:The try..catch..finally statement
function showLogValue(num){
 var s = 'No Error';
 try
 {if (num < 0) throw 'badnum';
 if (num == 0) throw 'zero'; }
 catch (err)
 { s = err;
 switch (err) {
 case 'badnum':num = -num;
 break;
 case 'zero':num = 1;
 break; }
 }
[finally{ alert([s,Math.log(num)]);}]
}
The finally block is optional. The two techniques can be
used in concert.

Looping
function whileLoop(num){
 while (num > 0)

 { alert(num);
 num--;}
}

function doLoop(num){
 do{
 alert(num);
 num--;
 }while (num > 0);
}

function forLoop(num){
 var i;
 for (i=0;i<num;i++){
 alert(num);
 }
}

break causes immediate termination of the loop.
loop statements after continue are skipped and the next
execution of the loop is performed.

function forInLoop(){
 var s,x;
 for (x in document)
 {
 s=x + ' = ' + document[x];
 alert(s);
 }
}
This code is best tested in Opera which offers the option
of stopping the script at each alert. In place of
document any JavaScript object or an array can be
used to loop through its properties/elements.

return
return causes immediate termination of the JavaScript
function. If no value is returned, or if return is missing
the function return type is undefined.

document Object
body - the body of the document
cookie - read/write the document cookies
domain – where was the document served from?
forms[] - array of all forms in the document
images[] - array of all images in the document
referrer – who pointed to this document?
URL – the URL for the document
getElementById(id) – element bearing ID of id
getElementsByName(n) – array of elements named n
getElementsByTagName(t) - array of t tagged
elements
write – write plain or HTML text to the document
onload – occurs when the document is loaded
onunload – occurs when user browses away, tab is
closed etc.

Element Object
By element we mean any HTML element retrieved using
the document.getElementBy# methods.

attributes – all element attributes in an array
className – the CSS style assigned to the element
id – the id assigned to the element
innerHTML – HTML content of the element
innerText – content of the element shorn of all HTML
tags. Does not work in Firefox
offset# – element dimensions (# = Height/Width) or
location(# = Left/Right) in pixels

ownerDocument – take a guess
style – CSS style declaration
tagName – element tag type. Curiously, always in
 uppercase
textContent – the Firefox equivalent of innerText

location Object
host – URL of the site serving up the document
href – the entire URL to the document
pathname – the path to the document on the host
protocol – the protocol used, e.g. http
reload(p) - reload the document. From the cache if p is
true.
replace(url) – replace the current document with the
one at url. Discard document entry in browser history.

screen Object
height – screen height in pixels
width – screen width in pixels

window Object
alert(msg) – displays a dialog with msg
clearInterval(id) – clears interval id set by setInterval
clearTimeout(id) – clears timeout id set by setTimeout
confirm(msg) – shows a confirmation dialog
print() - prints the window contents
prompt(msg, [default]) – shows prompt dialog,
optionally with default content. Returns content or null.
setInterval(expr,interval, [args]) – sets repeat at
interval ms. The function expr is evaluated, optionally
with args passed as parameters.
setTimeout(expr,time, [args]) Like setInterval but
non-repeating.

Notes
1 Evaluates after use 2 Evaluates before use

3 Zero-fill right shift 4 Note the semicolon!
Color Coding
italics – user code blue – JavaScript Keywords
red – Option object – JavaScript DOM object
green – only numeric values blue - object properties
green – object methods magenta – object events
Tested with Internet Explorer 6+, Firefox 1.5+ & Opera
9.1+.

If you find this reference card useful please help us by
creating links to our site http://www.explainth.at where
you will find other quick reference cards and many other
free programming resources.

http://www.explainth.at/
mailto:promote@brandspatch.com?subject=url_to_link-jsquick.pdf
mailto:promote@brandspatch.com?subject=url_to_link-jsquick.pdf
mailto:promote@brandspatch.com?subject=url_to_link-jsquick.pdf
mailto:promote@brandspatch.com?subject=url_to_link-jsquick.pdf
mailto:promote@brandspatch.com?subject=url_to_link-jsquick.pdf

