
9/8/2020

1

Computer Science
Principles
CHAPTER 3 – ITERATION, LISTS, AND ALGORITHM DESIGN

Announcements
Reading: Read Chapter 3 of Conery

First quiz on Monday

Acknowledgement: These slides are revised versions of slides prepared by Prof. Arthur
Lee, Tony Mione, Alex Kuhn and Pravin Pawar for earlier CSE 101 classes. Some slides
are based on Prof. Kevin McDonald at SBU CSE 101 lecture notes and the textbook by
John Conery.

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 2

1

2

9/8/2020

2

Overview
This lecture will focus on:

i. iteration (code that repeats a list of steps)
ii. lists
iii. the thought process for designing algorithms

As an example, we will look at the ancient algorithm for finding prime numbers: the
Sieve of Eratosthenes

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 3

Prime Numbers
A prime is a natural number greater than 1 that has no divisors other than 1 and itself

Non-prime numbers are called composite numbers

Example primes: 2, 3, 5, 11, 73, 9967, . . .

Example composites: 4 (2x2), 10 (2x5), 99 (3x3x11)

Prime numbers play an important role in encrypting data and Internet traffic

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 4

3

4

9/8/2020

3

The Sieve of Eratosthenes
The basic idea of the algorithm is simple. Below, it is briefly described in pseudocode:

make a list of numbers, starting with 2
repeat the following steps until done:

the first unmarked number in the list is prime
cross off multiples of the most recent prime

So, first cross off multiples of 2.

Then, cross off multiples of 3 that were not crossed off in the first round
◦ e.g., 6 is a multiple of 2 and 3, so it was crossed off in the first round

Next, cross off multiples of 5 that were not crossed off in the first two rounds
◦ Note that because 4 is a multiple of 2, all multiples of 4 were crossed off in the first round

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 5

The Sieve of Eratosthenes
The algorithm continues in this fashion until there are no more numbers to cross off

We will discuss more later exactly when it stops running

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 6

5

6

9/8/2020

4

Devising an algorithm
The method depicted in the previous slide works well for short lists

But what if prime numbers between 2 and 100 are needed? …or 1000?
◦ It’s a tedious process to write out a list of 100 numbers
◦ Chances are a few arithmetic mistakes will be made (this is a boring job!)

Can this method be turned into a computation?

Yes, but we need to add more detail to the steps

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 7

Devising an algorithm
A detailed specification of the starting condition is there in the pseudocode (e.g., “make
a list”)

However, some things are not clearly defined:
◦ “Cross off” and “next number” need to be clearly defined if this will be coded in Python
◦ The stopping condition is also not clear

◦ When does the process stop? Perhaps when all the numbers are crossed off?

First, let us explore a few new ideas in Python

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 8

7

8

9/8/2020

5

Collections
In everyday life, collections of objects are often encountered
◦ Course catalog: a collection of course descriptions
◦ Parking lot: a collection of vehicles

Mathematicians also work with collections
◦ Matrix (a table of numbers)
◦ Sequence (e.g., 1, 1, 2, 3, 5, 8, ...)

In computer science collections are made by defining a data structure that includes
references to objects

The term object means a piece of data
◦ Objects include numbers, strings, dates, and more

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 9

Lists
An object that contains other objects is called a container

The simplest kind of container in Python is called a list

One way to make a list is to enclose a set of objects in square brackets:
ages = [61, 32, 19, 37, 42, 39]

The above statement is an assignment statement
◦ Python creates an object to represent the list and associates the name ages with the new

object

The len function tells us how many elements are in a list:
◦ len(ages) # returns the value 6

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 10

9

10

9/8/2020

6

Lists of strings
Any kind of object can be stored in a list

This statement defines a list with three strings:
◦ breakfast = ['green eggs', 'ham', 'toast']

Note what happens when we ask Python how many objects are in this list:
◦ len(breakfast) # returns the value 3
◦ The list contains three string objects, so the return value of the call to len is 3
◦ Python did not count the individual letters with a list

However, len('apple') returns 5 … with a string, it counts the individual letters

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 11

Empty lists
A list can also be made with no objects:
◦ cars = []

An empty list is still a list, even though it contains no objects
◦ A bag with nothing in it is still a bag, even though it contains nothing

The length of an empty list is 0
◦ len(cars) # returns the value 0

It may seem strange to create a list with nothing in it, but usually it is done because the
list is needed but it will be filled later

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 12

11

12

9/8/2020

7

Iteration
After building a container, most applications need to do something with each item in it

The idea is to “step through” the container to do something to each object

This type of operation is called iteration

For example, to find the largest item in an (unsorted) list, an algorithm would need to
check the value of every item during its search
◦ This algorithm will be examined a little later

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 13

For loops
The simplest way to “visit” every item in a list is to use a for loop

This example prints every item in the list cars :
for car in cars: # "for each car in a list of cars"

print(car)

Note that the statements inside a for loop – the body of the loop – must be indented
◦ Python assigns car to be the first item in the list and then executes the indented statement(s)
◦ Then it gets the next item, assigns it to car, and executes the indented statement(s) again
◦ It repeats until all the items in list have been processed

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 14

13

14

9/8/2020

8

For loops
Suppose we had this code:

cars = ['Kia', 'Honda', 'Toyota', 'Ford']
for car in cars:

print(car + ' ' + str(len(car)))

The for loop would output this:
Kia 3
Honda 5
Toyota 6
Ford 4

Note that len(car) gives the length of each car string in the list as that car is “visited”
• len(cars) would give what?

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 15

Example: sum()
Consider a function that computes the sum of the numbers in a list
◦ Note this function exists in Python, named sum(), but by thinking how to write it we can

better understand for loops.

First, initialize a variable total to zero

Then, use a for loop to add each number in the list to total

After all items have been added, the loop will terminate, and the function returns the
final value of total

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 16

15

16

9/8/2020

9

Example: sum()
def sum(nums):

total = 0
for num in nums:

total += num
return total

Example

t = sum([3, 5, 1]) # t will equal 9

See sum_tests.py

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 17

Example: sum()
def sum(nums):

total = 0
for num in nums:

total += num
return total

Example

t = sum([3, 5, 1]) # t will equal 9

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 18

17

18

9/8/2020

10

Example: sum()
def sum(nums):

total = 0
for num in nums:

total += num
return total

Example

t = sum([3, 5, 1]) # t will equal 9

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 19

Example: sum()
def sum(nums):

total = 0
for num in nums:

total += num
return total

Example

t = sum([3, 5, 1]) # t will equal 9

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 20

19

20

9/8/2020

11

Example: sum()
Now we will trace the execution of this code to understand it better

A blue arrow will indicate the current line of code being executed

A table of values will show how the variables change value over time

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 21

Trace execution: sum()
def sum(nums):

total = 0
for num in nums:

total += num
return total

Example

t = sum([3, 5, 1]) # t will equal 9

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 22

21

22

9/8/2020

12

Trace execution: sum()
def sum(nums):

total = 0
for num in nums:

total += num
return total

Example

t = sum([3, 5, 1]) # t will equal 9

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 23

Trace execution: sum()
def sum(nums):

total = 0
for num in nums:

total += num
return total

Example

t = sum([3, 5, 1]) # t will equal 9

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 24

23

24

9/8/2020

13

Trace execution: sum()
def sum(nums):

total = 0
for num in nums:

total += num
return total

Example

t = sum([3, 5, 1]) # t will equal 9

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 25

Trace execution: sum()
def sum(nums):

total = 0
for num in nums:

total += num
return total

Example

t = sum([3, 5, 1]) # t will equal 9

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 26

25

26

9/8/2020

14

Trace execution: sum()
def sum(nums):

total = 0
for num in nums:

total += num
return total

Example

t = sum([3, 5, 1]) # t will equal 9

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 27

Trace execution: sum()
def sum(nums):

total = 0
for num in nums:

total += num
return total

Example

t = sum([3, 5, 1]) # t will equal 9

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 28

27

28

9/8/2020

15

Trace execution: sum()
def sum(nums):

total = 0
for num in nums:

total += num
return total

Example

t = sum([3, 5, 1]) # t will equal 9

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 29

Trace execution in PyCharm
PyCharm features a powerful tool called a debugger which can help trace the execution
of a program
◦ Usually a debugger is used to help find bugs

First, set a breakpoint by clicking the mouse to the left of the line where the computer
should pause execution

In sum_tests.py, put a breakpoint on line 8

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 30

29

30

9/8/2020

16

Trace execution in PyCharm

• When the computer is commanded to debug the program, it will stop at that line with the breakpoint
and not execute that line until it is told to

• When running the debugger for the first time, PyCharm may indicate some updates should be installed.
If so, install the recommended updates

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 31

Trace execution in PyCharm
• To begin execution, right-click on sum_tests.py and pick “Debug ‘sum_tests’”. The

computer stops at line 8.
• A “Debugger” panel opens

• On the right, there is a sub-panel named “Variables” that will show the values of variables as
the program runs

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 32

31

32

9/8/2020

17

Trace execution in PyCharm
• Every time the downward facing blue arrow is hit (Step over button) PyCharm executes

another line of code
• PyCharm highlights in blue what line it will execute next

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 33

The debugger shows the value of
each variable in the source code

Trace execution in PyCharm
Here’s the state of the program after hitting the blue arrow several times:

In lab, there will be opportunity to practice using the debugger
◦ [Hint] Getting familiar with this tool will save hours of headaches later on

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 34

33

34

9/8/2020

18

List indexes
• Often an item in the middle of a list is needed
• If a list has n item, the locations in the list are numbered from 0 to n-1

(not 1 through n)
• The notation a[i] stands for “the item at location i in list a”

• In programming, use the word index to refer to the numerical position of an element
in a list

• Example: scores = [89, 78, 92, 63, 92]
scores[0] is 89
scores[2] is 92
scores[5] gives an “index out of range” error (why?)

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 35

List indexes
The index method will indicate the position of an element in a list

If the requested element is not in the list, the Python interpreter will generate an error

Example:

scores = [89, 78, 92, 63, 92]
◦ scores.index(92) is 2, the index of the first occurrence of 92 in the scores list
◦ scores.index(99) generates this error: “ValueError: 99 is not in list”

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 36

35

36

9/8/2020

19

List indexes
• If the program needs the index of a value, and it is not guaranteed the value is in the

list, use an if statement in conjunction with the in operator to first make sure the item
is actually in the list

• Example:
vowels = ['a', 'e', 'i', 'o', 'u']
letter = 'e'
if letter in vowels:

print('That letter is at index ‘ + str(vowels.index(letter)) + '.')
else:

print('That letter is not in the list.')

• Output: That letter is at index 1.

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 37

Iteration using list indexes
• A common programming “idiom” uses a for loop based on a list index:

for i in range(n):
do something with i

• range(n) means “the sequence of integers starting from zero and ranging up to, but
not including, n”

• Python executes the body of the loop n times
• i is set to every value between 0 and n-1 (n is NOT included)

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 38

37

38

9/8/2020

20

Iteration using list indexes
This function computes and returns the sum of the first k values in a list (see partial_total.py)

def partial_total(nums, k):
total = 0
for i in range(k):

total += nums[i]
return total

Example:
a = [4, 2, 8, 3, 1]
partial_total(a, 3) # returns the value 14
partial_total(a, 1) # returns the value 4
partial_total(a, 6) # error

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 39

This function computes and returns the sum of the first k values in a list

def partial_total(nums, k):
total = 0
for i in range(k):

total += nums[i]
return total

Example:
a = [4, 2, 8, 3, 1]
partial_total(a, 3) # returns the value 14
partial_total(a, 1) # returns the value 4
partial_total(a, 6) # error

Iteration using list indexes

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 40

39

40

9/8/2020

21

This function computes and returns the sum of the first k values in a list

def partial_total(nums, k):
total = 0
for i in range(k):

total += nums[i]
return total

Example:
a = [4, 2, 8, 3, 1]
partial_total(a, 3) # returns the value 14
partial_total(a, 1) # returns the value 4
partial_total(a, 6) # error

Iteration using list indexes

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 41

This function computes and returns the sum of the first k values in a list

def partial_total(nums, k):
total = 0
for i in range(k):

total += nums[i]
return total

Example:
a = [4, 2, 8, 3, 1]
partial_total(a, 3) # returns the value 14
partial_total(a, 1) # returns the value 4
partial_total(a, 6) # error

Iteration using list indexes

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 42

41

42

9/8/2020

22

Iteration using list indexes
•Trace the execution of this function for one example

def partial_total(nums, k):
total = 0
for i in range(k):

total += nums[i]
return total

• Example:
a = [4, 2, 8, 3, 1]
partial_total(a, 3) # returns the value 14

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 43

Iteration using list indexes
•Trace the execution of this function for one example

def partial_total(nums, k):
total = 0
for i in range(k):

total += nums[i]
return total

• Example:
a = [4, 2, 8, 3, 1]
partial_total(a, 3) # returns the value 14

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 44

43

44

9/8/2020

23

Iteration using list indexes
•Trace the execution of this function for one example

def partial_total(nums, k):
total = 0
for i in range(k):

total += nums[i]
return total

• Example:
a = [4, 2, 8, 3, 1]
partial_total(a, 3) # returns the value 14

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 45

Iteration using list indexes
•Trace the execution of this function for one example

def partial_total(nums, k):
total = 0
for i in range(k):

total += nums[i]
return total

• Example:
a = [4, 2, 8, 3, 1]
partial_total(a, 3) # returns the value 14

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 46

45

46

9/8/2020

24

Iteration using list indexes
•Trace the execution of this function for one example

def partial_total(nums, k):
total = 0
for i in range(k):

total += nums[i]
return total

• Example:
a = [4, 2, 8, 3, 1]
partial_total(a, 3) # returns the value 14

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 47

Iteration using list indexes
•Trace the execution of this function for one example

def partial_total(nums, k):
total = 0
for i in range(k):

total += nums[i]
return total

• Example:
a = [4, 2, 8, 3, 1]
partial_total(a, 3) # returns the value 14

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 48

47

48

9/8/2020

25

Iteration using list indexes
•Trace the execution of this function for one example

def partial_total(nums, k):
total = 0
for i in range(k):

total += nums[i]
return total

• Example:
a = [4, 2, 8, 3, 1]
partial_total(a, 3) # returns the value 14

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 49

Iteration using list indexes
•Trace the execution of this function for one example

def partial_total(nums, k):
total = 0
for i in range(k):

total += nums[i]
return total

• Example:
a = [4, 2, 8, 3, 1]
partial_total(a, 3) # returns the value 14

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 50

49

50

9/8/2020

26

String indexes
Strings and lists have much in common, including indexing:

name[i] would give us the character at index i of the string name

nums[i] gives us the element at index i of the list nums

Examples:
title = 'Lord of the Rings'
print(title[0]) # prints L
print(title[2]) # prints r
j = 6
print(title[j]) # prints f

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 51

Making lists of numbers
• The range function can be used to make a list of integers
• This example makes a list of the numbers from 0 to 9:

nums = list(range(10))

• Note that list is the name of a class in Python
• A class describes what kinds of data an object can store

• In general, if a class name is used as a function, Python will create an object of that
class
• For example, list() or str(50)
• These functions are called constructors because they construct new objects
• More on this topic later in the course

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 52

51

52

9/8/2020

27

Back to the Sieve algorithm
We now know how to make a list of prime numbers

Use a Python list object to represent a “worksheet” of numbers that will be
progressively crossed off

The list will initially have all the integers from 2 to n (the upper limit)

Will use for loops to iterate over the list to cross off composite numbers
◦ Can pass two values to range – e.g. range(2, 100)

◦ The first value is the lower limit (2 in the example)
◦ The other as the upper limit, minus 1 (99 in the example)
◦ So to make a list of numbers between 2 and 99, type list(range(2, 100))

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 53

Back to the Sieve algorithm
• The steps of the algorithm are easier to understand if two “placeholder” values are

added at the front of the list to represent 0 and 1 (neither of which is a prime number)

• Python has a special value called None that stands for “no object”
• Since the expression a + b means “concatenate a and b” where a and b are lists, the

statement below creates the initial worksheet:
worksheet = [None, None] + list(range(2,100))

• With the two placeholders at the front, any number i will be at worksheet[i]
• For example, the number 5 will be at worksheet[5] instead of worksheet[3]

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 54

53

54

9/8/2020

28

PythonLabs
PythonLabs is a set of Python modules developed for the course textbook

PythonLabs homepage: http://ix.cs.uoregon.edu/~conery/eic/python/

Installation instructions: http://ix.cs.uoregon.edu/~conery/eic/python/installation.html

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 55

PythonLabs – SieveLab
The module for the Sieve algorithm is named SieveLab

SieveLab has:
◦ A complete implementation of a sieve function for finding prime numbers
◦ Functions that use algorithm animation to generate graphical displays to show how the

algorithm works

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 56

55

56

9/8/2020

29

SieveLab
Below you can see an example of how to use the SieveLab module

import PythonLabs.SieveLab
worksheet = [None, None] + list(range(2, 400))
PythonLabs.SieveLab.view_sieve(worksheet)

Call a SieveLab function named mark_multiples to see how the algorithm removes
multiples of a specified value
◦ The two arguments to mark_multiples are a number k and the worksheet list
◦ The screen will be updated to show that k is prime (indicated by a blue square)
◦ Gray boxes will be drawn over all the multiples of k

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 57

SieveLab
PythonLabs.SieveLab.mark_multiples(2, worksheet)

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 58

57

58

9/8/2020

30

SieveLab
Call SieveLab’s erase_multiples function to erase the marked numbers
• Erase the multiples of 2 using this function

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 59

SieveLab
PythonLabs.SieveLab.erase_multiples(2, worksheet)

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 60

59

60

9/8/2020

31

SieveLab
After erasing multiples of 2, the lowest unmarked number is 3, so on the next round,
remove multiples of 3

Repeat the “marking” and “erasing” steps until only prime numbers are left

Following is the process for marking and erasing multiples of 3, 5 and 7

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 61

SieveLab
PythonLabs.SieveLab.mark_multiples(3, worksheet)

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 62

61

62

9/8/2020

32

SieveLab
PythonLabs.SieveLab.erase_multiples(3, worksheet)

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 63

SieveLab
PythonLabs.SieveLab.mark_multiples(5, worksheet)

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 64

63

64

9/8/2020

33

SieveLab
PythonLabs.SieveLab.erase_multiples(5, worksheet)

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 65

SieveLab
PythonLabs.SieveLab.mark_multiples(7, worksheet)

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 66

65

66

9/8/2020

34

SieveLab
PythonLabs.SieveLab.erase_multiples(7, worksheet)

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 67

Sieve algorithm: a helper function
• An important step toward implementing the Sieve algorithm is to write a function that

solves a small part of the problem

• The function sift will make a single pass through the worksheet
• Pass it a number k, and sift will find and remove multiples of k
• For example, to sift out multiples of 5 from the list called worksheet we could write:

sift(5, worksheet)

• sift has a very specific purpose, and it is unlikely to be used except as part of an
implementation of the Sieve algorithm
• Programmers call special-purpose functions like this helper functions

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 68

67

68

9/8/2020

35

Stepping through the worksheet
• Each call to sift is used to find multiples of k
• The first one is 2*k
• Notice that the remaining multiples (3*k, 4*k, etc) are all k steps apart:

• Use a for-loop with a range expression to walk through the list:
for i in range (2*k, len(a), k):

• Note this range expression has three arguments:
1. the starting point
2. the ending point
3. the step size (k)

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 69

Stepping through the worksheet
To remove a number from the worksheet, we could use the Python del statement,
which deletes an item from a list
◦ But this would shorten the list and make it harder to walk through on future iterations

A better solution: replace the items with placeholders (None objects)

The complete implementation of the sift function:
def sift(k, a):

for i in range(2*k, len(a), k):
a[i] = None

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 70

69

70

9/8/2020

36

Stepping through the worksheet
def sift(k, a):

for i in range(2*k, len(a), k):
a[i] = None

• An example of sift in action:
worksheet = [None, None] + list(range(2, 16))

• worksheet is now:
[None, None, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

• Now call sift(2, worksheet)
• worksheet becomes this:

[None, None, 2, 3, None, 5, None, 7, None, 9, None, 11, None, 13, None, 15]

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 71

The sieve() function
• Now that there is a helper function to do the hard work, we want to write the sieve to

solve the complete problem

• Much easier to write now that we have the helper function written

• When a program has helpers, a function like sieve (which is called to solve the
complete problem) is known as a top-level function

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 72

71

72

9/8/2020

37

The sieve() function
• Goal: Write a loop that starts by sifting multiples of 2 and keep calling sift until all

composite numbers are removed

• This loop can stop when the next number to send to sift is greater than the square
root of n (why?)

• Thus, the for loop that controls the loop should set k to every value from 2 up to the
square root of n:

for k in range(2, sqrt(n)):

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 73

The sieve() function
for k in range(2, sqrt(n)):

There is a problem with this code: Can not pass a floating-point value to range

We can “round up” the square root (e.g. 17.2 -> 18)
◦ That provides what is needed: an integer greater than the highest possible prime factor of n

A function named ceil in Python’s math library does this operation
◦ ceil is short for “ceiling”

A corresponding function named floor rounds a floating-point value down to the
nearest integer

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 74

73

74

9/8/2020

38

sieve()’s main loop
• One important detail: before sifting out multiples of a number, make sure it hasn’t

already been removed
• For example, don’t need to sift multiples of 4 because 4 was already removed when

sifting multiples of 2
• sift would still work, but the program would be less efficient

• The main loop looks like this:
for k in range(2, ceil(sqrt(n))):

if worksheet[k] is not None:
sift(k, worksheet)

• Note that the expression x is not None is the preferred way of testing to see if x is a
reference to the None object

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 75

Sieve: remove the placeholders
• One last step: to make the final list, remove the None objects from the worksheet

• We can make a new helper function called non_nulls returns a copy of the
worksheet, but without any None objects

• It makes an initial empty list named res (for “result”)
• Then it uses a for loop to look at every item in the input list
• If an item is not None, the item is appended to res using the append method for

lists
• When the iteration is complete, res is returned as the result of the function call

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 76

75

76

9/8/2020

39

Sieve: remove the placeholders
def non_nulls(a):

res = []
for x in a:

if x is not None:
res.append(x)

return res

• Example:
worksheet = [None, None, 2, 3, None, 5, None, 7, None, None,

None, 11, None, 13, None, None]
worksheet = non_nulls(worksheet) # worksheet is now: [2, 3, 5, 7, 11, 13]

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 77

Sieve: remove the placeholders
def non_nulls(a):

res = []
for x in a:

if x is not None:
res.append(x)

return res

•Example:
worksheet = [None, None, 2, 3, None, 5, None, 7, None, None,

None, 11, None, 13, None, None]
worksheet = non_nulls(worksheet) # worksheet is now: [2, 3, 5, 7, 11, 13]

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 78

77

78

9/8/2020

40

Sieve: remove the placeholders
def non_nulls(a):

res = []
for x in a:

if x is not None:
res.append(x)

return res

•Example:
worksheet = [None, None, 2, 3, None, 5, None, 7, None, None,

None, 11, None, 13, None, None]
worksheet = non_nulls(worksheet) # worksheet is now: [2, 3, 5, 7, 11, 13]

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 79

Sieve: remove the placeholders
def non_nulls(a):

res = []
for x in a:

if x is not None:
res.append(x)

return res

•Example:
worksheet = [None, None, 2, 3, None, 5, None, 7, None, None,

None, 11, None, 13, None, None]
worksheet = non_nulls(worksheet) # worksheet is now: [2, 3, 5, 7, 11, 13]

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 80

79

80

9/8/2020

41

Aside: appending to a List
+= can be used to concatenate one string to the end of another
◦ This syntax can also be used to append one list to another

Example:

fruits = ['apple', 'orange']

fruits += ['banana', 'mango', 'pear']

fruits is now: ['apple', 'orange', 'banana', 'mango', 'pear']

fruits += ['pineapple']

fruits is now: ['apple', 'orange', 'banana', 'mango', 'pear', 'pineapple']

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 81

The Sieve algorithm: completed!
• Now, put all the pieces together
• Import the math library to get access to sqrt and ceil
• In the body of the sieve function:

• Create the worksheet with two initial None objects and all integers from 2 to n
• Add the for-loop that calls sift
• Call non_nulls to remove the None objects from the worksheet

• See sieve.py and the next slide for the code
• See PythonLabs/SieveLab.py: lines 12–28 for the textbook’s implementation of the

sieve function
• Run sieve_visualization.py using PyCharm's Python Console to see it in action

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 82

81

82

9/8/2020

42

Completed sieve() function
from math import *
def sift(k, a):

... # see earlier slides

def non_nulls(a):
... # see earlier slides

def sieve(n):
worksheet = [None, None] + list(range(2, n))
for k in range(2, ceil(sqrt(n))):

if worksheet[k] is not None:
sift(k, worksheet)

return non_nulls(worksheet)

primes = sieve(100)
print(primes)

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 83

See sieve.py

Abstraction
Now we have a function for making lists of prime numbers, which can be saved and
used later

It can be used to answer questions about primes, such as:
◦ How many primes are less than n?
◦ What is the largest gap between successive primes?
◦ What are some twin primes (two prime numbers that differ only by 2, like 17 and 19)?

This is a good example of abstraction: There is a nice, neat package that can be saved
and reused

In the future, there is no need to worry about the implementation details of sieve: just
use it!
◦ Just need to know that sieve(n) makes a list of prime numbers from 2 to n

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 84

83

84

9/8/2020

43

Additional examples
Next is a look at some additional examples of how to use for loops and lists to solve
problems in Python

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 85

Example: find the maximum
Try writing an algorithm to find the maximum value in a list
◦ Note that a function already exists in Python (called max), but it is good practice

The basic idea is to iterate over the list and keep track of the largest value seen to that
point

Begin by taking the value at index 0 as the maximum

Continue with the remainder of the list, comparing the next value with the current
maximum and updating the maximum if and when a larger value than the current
maximum is found

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 86

85

86

9/8/2020

44

Example: find_max.py
def find_max(nums):

maximum = nums[0]
for i in range(1, len(nums)):

if nums[i] > maximum:
maximum = nums[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 87

Trace execution: find_max.py
def find_max(nums):

maximum = nums[0]
for i in range(1, len(nums)):

if nums[i] > maximum:
maximum = nums[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 88

87

88

9/8/2020

45

Trace execution: find_max.py
def find_max(nums):

maximum = nums[0]
for i in range(1, len(nums)):

if nums[i] > maximum:
maximum = nums[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 89

Trace execution: find_max.py
def find_max(nums):

maximum = nums[0]
for i in range(1, len(nums)):

if nums[i] > maximum:
maximum = nums[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 90

89

90

9/8/2020

46

Trace execution: find_max.py
def find_max(nums):

maximum = nums[0]
for i in range(1, len(nums)):

if nums[i] > maximum: # False
maximum = nums[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 91

Trace execution: find_max.py
def find_max(nums):

maximum = nums[0]
for i in range(1, len(nums)):

if nums[i] > maximum:
maximum = nums[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 92

91

92

9/8/2020

47

Trace execution: find_max.py
def find_max(nums):

maximum = nums[0]
for i in range(1, len(nums)):

if nums[i] > maximum:
maximum = nums[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 93

Trace execution: find_max.py
def find_max(nums):

maximum = nums[0]
for i in range(1, len(nums)):

if nums[i] > maximum: # True
maximum = nums[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 94

93

94

9/8/2020

48

Trace execution: find_max.py
def find_max(nums):

maximum = nums[0]
for i in range(1, len(nums)):

if nums[i] > maximum:
maximum = nums[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 95

Trace execution: find_max.py
def find_max(nums):

maximum = nums[0]
for i in range(1, len(nums)):

if nums[i] > maximum:
maximum = nums[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 96

95

96

9/8/2020

49

Trace execution: find_max.py
def find_max(nums):

maximum = nums[0]
for i in range(1, len(nums)):

if nums[i] > maximum:
maximum = nums[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 97

Trace execution: find_max.py
def find_max(nums):

maximum = nums[0]
for i in range(1, len(nums)):

if nums[i] > maximum: # True
maximum = nums[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 98

97

98

9/8/2020

50

Trace execution: find_max.py
def find_max(nums):

maximum = nums[0]
for i in range(1, len(nums)):

if nums[i] > maximum:
maximum = nums[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 99

Trace execution: find_max.py
def find_max(nums):

maximum = nums[0]
for i in range(1, len(nums)):

if nums[i] > maximum:
maximum = nums[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 100

99

100

9/8/2020

51

Trace execution: find_max.py
def find_max(nums):

maximum = nums[0]
for i in range(1, len(nums)):

if nums[i] > maximum:
maximum = nums[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 101

Trace execution: find_max.py
def find_max(nums):

maximum = nums[0]
for i in range(1, len(nums)):

if nums[i] > maximum: # False
maximum = nums[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 102

101

102

9/8/2020

52

Trace execution: find_max.py
def find_max(nums):

maximum = nums[0]
for i in range(1, len(nums)):

if nums[i] > maximum:
maximum = nums[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 103

Trace execution: find_max.py
def find_max(nums):

maximum = nums[0]
for i in range(1, len(nums)):

if nums[i] > maximum:
maximum = nums[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 104

103

104

9/8/2020

53

Trace execution: find_max.py
def find_max(nums):

maximum = nums[0]
for i in range(1, len(nums)):

if nums[i] > maximum: # False
maximum = nums[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 105

Trace execution: find_max.py
def find_max(nums):

maximum = nums[0]
for i in range(1, len(nums)):

if nums[i] > maximum:
maximum = nums[i]

return maximum

ages = [20, 16, 22, 30, 17, 24]
max_age = find_max(ages) # max_age will be 30
print('Maximum age: ' + str(max_age))

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 106

105

106

9/8/2020

54

Example: count the vowels
A for loop can be used to iterate over the characters of a string

To see how this works, consider a function called count_vowels that counts the number
of vowels (lowercase or uppercase) in a word
◦ To make this problem a little easier to solve, we can call the lower() method for strings, which

makes a copy of a given string and changes all the uppercase letters to lowercase
◦ upper() makes all letters uppercase

Strings are immutable (unchangeable) objects

To convert a string into lowercase we must make a lowercase copy of it and replace the
original string with the new one

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 107

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou'
num_vowels = 0
for letter in word.lower(): # search through a

if letter in vowels: # lowercase copy of
num_vowels += 1 # the original word

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 108

107

108

9/8/2020

55

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou’
num_vowels = 0
for letter in word.lower():

if letter in vowels:
num_vowels += 1

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 109

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou’
num_vowels = 0
for letter in word.lower():

if letter in vowels:
num_vowels += 1

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 110

109

110

9/8/2020

56

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou’
num_vowels = 0
for letter in word.lower():

if letter in vowels:
num_vowels += 1

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 111

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou’
num_vowels = 0
for letter in word.lower():

if letter in vowels:
num_vowels += 1

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 112

111

112

9/8/2020

57

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou’
num_vowels = 0
for letter in word.lower():

if letter in vowels: # False
num_vowels += 1

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 113

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou’
num_vowels = 0
for letter in word.lower():

if letter in vowels:
num_vowels += 1

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 114

113

114

9/8/2020

58

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou’
num_vowels = 0
for letter in word.lower():

if letter in vowels:
num_vowels += 1

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 115

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou’
num_vowels = 0
for letter in word.lower():

if letter in vowels: # True
num_vowels += 1

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 116

115

116

9/8/2020

59

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou’
num_vowels = 0
for letter in word.lower():

if letter in vowels:
num_vowels += 1

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 117

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou’
num_vowels = 0
for letter in word.lower():

if letter in vowels:
num_vowels += 1

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 118

117

118

9/8/2020

60

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou’
num_vowels = 0
for letter in word.lower():

if letter in vowels:
num_vowels += 1

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 119

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou’
num_vowels = 0
for letter in word.lower():

if letter in vowels: # False
num_vowels += 1

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 120

119

120

9/8/2020

61

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou’
num_vowels = 0
for letter in word.lower():

if letter in vowels:
num_vowels += 1

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 121

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou’
num_vowels = 0
for letter in word.lower():

if letter in vowels:
num_vowels += 1

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 122

121

122

9/8/2020

62

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou’
num_vowels = 0
for letter in word.lower():

if letter in vowels: # True
num_vowels += 1

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 123

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou’
num_vowels = 0
for letter in word.lower():

if letter in vowels:
num_vowels += 1

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 124

123

124

9/8/2020

63

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou’
num_vowels = 0
for letter in word.lower():

if letter in vowels:
num_vowels += 1

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 125

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou’
num_vowels = 0
for letter in word.lower():

if letter in vowels:
num_vowels += 1

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 126

125

126

9/8/2020

64

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou’
num_vowels = 0
for letter in word.lower():

if letter in vowels: # False
num_vowels += 1

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 127

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou’
num_vowels = 0
for letter in word.lower():

if letter in vowels:
num_vowels += 1

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 128

127

128

9/8/2020

65

A list of lists
In Python, a list can contain objects of any type

A list is an object. Therefore, a list can contain other lists!

Imagine there is a group of 4 students, and for each student there are 3 exam scores:
scores = [[89, 85, 90], [78, 85, 72],

[99, 86, 92], [82, 84, 79]]

To access a particular score, two indices are needed:
◦ First, which students grade is needed (0 through 3)
◦ Second, which score of that student is desired (0 through 2)

Example: scores[3][1] is fourth student's score on the second exam (which is 84)

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 129

Example: compute averages (v1)
We want to write code that will compute the average score that students earned on
each exam

Will write more than one version of the program But start simple

In the first version we will "hard-code" several values (the number of students and the
number of scores) in the program

Then, generalize things a bit and use variables for these values

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 130

129

130

9/8/2020

66

Example: averages_v1.py
scores represents 4 students who each took 3 exams
scores = [[89, 85, 90], [78, 85, 72],

[99, 86, 92], [82, 84, 79]]

averages = [0, 0, 0]

for student in scores:
averages[0] += student[0]
averages[1] += student[1]
averages[2] += student[2]

for i in range(3):
averages[i] /= 4

print(averages)

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 131

Example: compute averages (v2)
The first version of the code has a major negative: the algorithm will work only for a
class of four students who took three exams

Suppose the class is larger or smaller? Or suppose the students took more or fewer
exams?

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 132

131

132

9/8/2020

67

Example: compute averages (v2)
Next development attempt is a better (but more complicated) version of the algorithm
that can adapt to larger/smaller class sizes and more/fewer exams

The approach will rely on nested loops, which means there will be one loop inside of
another

Nested loops will become increasingly important as the course progresses

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 133

Example: averages_v2.py
One other thing before looking at the program

Recall that syntax like 'Hi'*3 will create a new string by repeating a given string a desired
number of times
◦ For instance, 'Hi'*3 equals 'HiHiHi'
◦ In a similar manner, [0]*3 would create a list containing 3 zeroes, namely, [0, 0, 0]

Thus, the * notation with strings and lists is essentially a form of concatenation

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 134

133

134

9/8/2020

68

Example: averages_v2.py
scores = [[89, 85, 90], [78, 85, 72], [99, 86, 92], [82, 84, 79]]

num_students = len(scores)
num_exams = len(scores[0]) # each student took the
averages = [0] * num_exams # same number of exams

for student in scores:
for i in range(0, num_exams): # nested loops

averages[i] += student[i]

for i in range(0, num_exams):
averages[i] /= num_students

print(averages)

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 135

Example: compute averages (v3)
In a third and final version of the exam average calculator, the computations will be
encapsulated (enclosed or wrapped) inside of a function

compute_averages(students)

The function takes the list of scores as its argument

After computing the exam averages, the function returns a list of the average scores

This illustrates that Python functions can return many values at once (via a list), not just
a single number or string

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 136

135

136

9/8/2020

69

Example: averages_v3.py
scores = [[89, 85, 90], [78, 85, 72], [99, 86, 92], [82, 84, 79]]

def compute_averages(students):
num_students = len(students)
num_exams = len(students[0])
avgs = [0] * num_exams

for student in students:
for i in range(0, num_exams):

avgs[i] += student[i]

for i in range(0, num_exams):
avgs[i] /= num_students

return avgs

averages = compute_averages(scores)
print(averages)

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 137

Example: bottles of beer/milk
The final example is on a lighter note looking at a program that prints the lyrics of the
song “99 Bottles of Beer on the Wall”
◦ In this song, the singer needs to count from 99 down to 0

The range command can be used to count up, but it also can count down if given a
negative number for the step size

For example, range(10,-1,-1) will count down from 10 to 0 by 1s

So list(range(10,-1,-1)) would generate the list [10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

The code on the next slide asks the user for the starting number so that the program
can start from a value other than 99

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 138

137

138

9/8/2020

70

Example: bottles.py
age = int(input('How old are you? '))

if age < 21:
drink_type = 'milk'

else:
drink_type = 'beer';

num_bottles = int(input('How many bottles of ' + drink_type + ' do you have? '))

for bottle in range(num_bottles, -1, -1):
if bottle > 1:

print(str(bottle) + ' bottles of ' + drink_type +
' on the wall!')

elif bottle == 1:
print('1 bottle of ' + drink_type + ' on the wall!')

else:
print('No bottles of ' + drink_type + ' on the wall!')

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 139

Example: vowels.py
def count_vowels(word):

vowels = 'aeiou'
num_vowels = 0
for letter in word.lower(): # search through a

if letter in vowels: # lowercase copy of
num_vowels += 1 # the original word

return num_vowels

word = 'Cider'
print('The number of vowels in ' + word + ' is ' +
str(count_vowels(word))) # will print 2

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 140

Modify this program to:
1. Also count and return
the number of non-vowel
letters
– Hint: use a list to return
both numbers

2. Print out the number of
vowels and non-vowels
- Hint: need to access the
index of the returned list

139

140

9/8/2020

71

Example: bottles.py
age = int(input('How old are you? '))

if age < 21:
drink_type = 'milk'

else:
drink_type = 'beer';

num_bottles = int(input('How many bottles of '
+ drink_type + ' do you have? '))

for bottle in range(num_bottles, -1, -1):
if bottle > 1:

print(str(bottle) + ' bottles of ' + drink_type +
' on the wall!')

elif bottle == 1:
print('1 bottle of ' + drink_type + ' on the wall!')

else:
print('No bottles of ' + drink_type + ' on the wall!')

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 141

Modify this program to:
1. Write milk only for
people younger than the
legal drinking age in your
country

2 Make it count up from 1
to the user input number,
incrementing by 2
(e.g. 1, 3, 5…)

Questions?

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 142

141

142

