

- Summer of 1821 Mathematician Charles Babbage and astronomer John Herschel were working on creating a book of mathematical tables.
- Almanac contains tables denoting positions of the Moons, planets and stars – which are used by navigators to determine location at the sea.
- Manual work caused a number of errors.
- Babbage showed his frustration with the large number of errors by exclaiming, "I wish to God these calculations had been executed by steam!"
- What made Babbage think steam engines could help him solve mathematical problems?

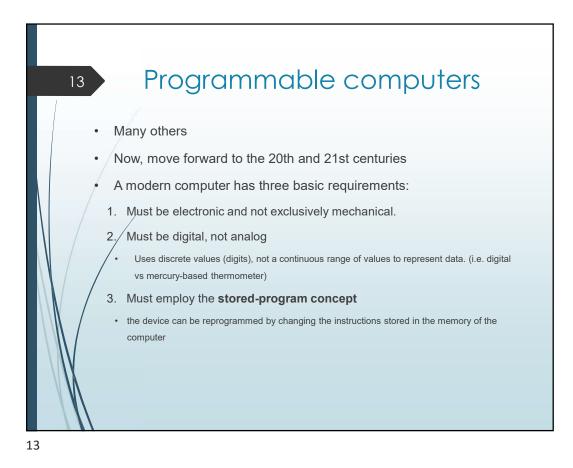
NAUTICAL ALMANAC

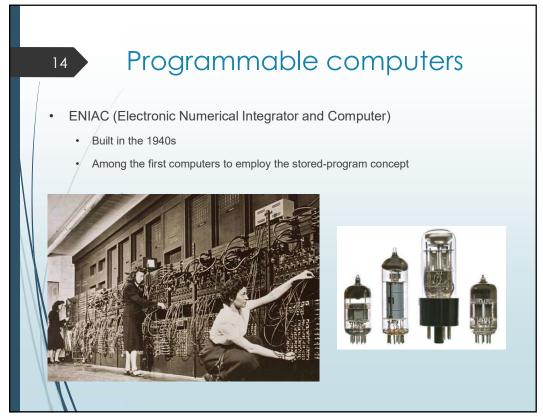
FOR THE YEAR 1822.

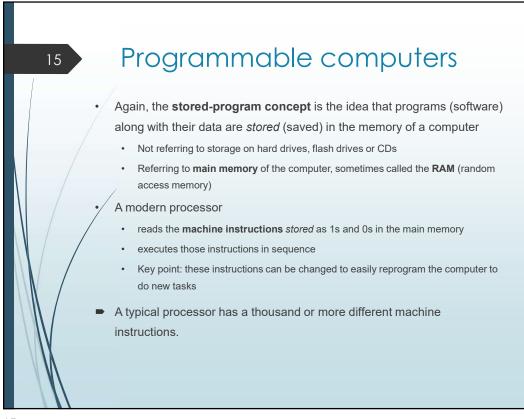
ICAL EPHEN

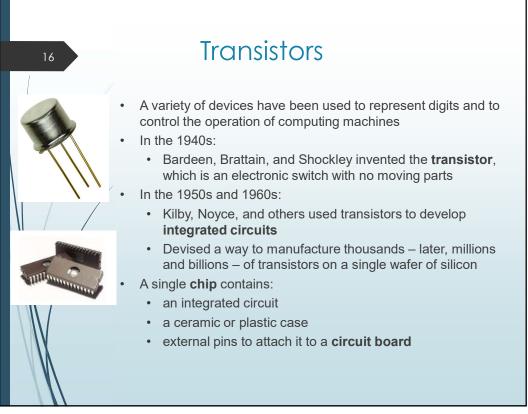
SIONERS OF LONGITU

96 2002 MAY 10, 11, 12 (FRI., SAT., SUN.)											2002 MAY 10, 11,					, 12						9		
UT	ARIES	VENUS	-3.9	MARS +	-1.7	JUPITER -2.0	SATURN	+0.1		STARS	UT		SUN		NOON	Lat	Twi Naut.	Civil	Sunrise	10	Moo 11	nnise 12	13	
d I	GHA	. /	Dec	. / .	ю,	GHA Dec	GHA	Dec ,	Name	SHA Dec		GHA	Dec	GHA D	Dec d HP	N 72	h m	h m	h m	h m 03 19	h m 02 53	h m 02 17	h =	
01	227 37.2 242 39.7 257 42.1	151 33.2 N2 166 32.3 181 31.5	3 58.3 58.7 59.1		45.1	124 05.5 N23 04.8 139 07.5 04.7 154 09.5 04.7	154 11.5 N 169 13.6 194 15.9	21 13.0 13.1 13.1	Acamar Achemar Acrux	315 25.3 \$40 17.8 335 33.7 \$57 13.5 173 18.8 \$63 06.9	100	190 5	1.3 N17 31.0 1.3 31.6	220 31.9 16.1	N 4 25.8 12.5 54.4 4 39.3 12.4 54.4	N 70 68	1111	1111	01 25 02 10	03 26	03 08	02 45	02 06	
01	272 44.6	196 30.7 211 29.9 2	59.5	196 04.2 211 04.8	45.4	169 11.5 04.7 194 13.5 04.6	199 17.9 . 214 20.1	. 13.1	Adhara Aldebaran	255 19.7 \$28 58.7 290 59.8 N16 30.8	000	2 210 5	1.3 32.9	235 07.0 16.0 249 42.0 16.0 264 17.0 16.0	4 50.7 12.5 54.4 5 03.2 12.5 54.4 5 15.7 12.4 54.4	66 64 62		00 28 01 35 02 09	02 39 03 01 03 18	03 36 03 40 03 44	03 30 03 39 03 46	03 23 03 37 03 49	03 15 03 37 03 55	
06	317 52.0		4 00.6	241 06.1 N23	45.9	199 15.5 04.6 214 17.5 N23 04.5	229 22.2 244 24.3 N		Alioth	166 27.8 N55 57.1	0	5 255 5	1.4 34.3	278 52.0 16.0	5 28.1 12.5 54.4 N 5 40.6 12.4 54.5	60	00 25	02 33	03 33	03 47	03 52	03 59	04 05	
F 05		256 27.5 271 26.6 286 25.8	01.4	271 07.4	46.3	229 19.4 04.5 244 21.4 04.5 259 23.4 . 04.4	259 26.5 274 28.6 299 30.8	13.3 13.3 13.4	Alkaid Al Naîr Alnilam	153 05.2 N49 18.2 27 54.7 \$46 56.9 275 55.6 \$ 1 12.1	0	285 5	1.4 35.6	308 01.9 15.9 322 36.8 15.8	5 53.0 12.4 54.5 6 05.4 12.4 54.5	56	01 56 02 19	03 07 03 20	03 55 04 05	03 52 03 54	04 03 04 07	04 16 04 23	04 32	
R 10	18 01.8 33 04.3	301 25.0 316 24.2	02.2	301 08.7 316 09.4	46.8	274 25.4 04.4 289 27.4 04.4	319 35.0	13.5	Alphard	218 04.7 \$ 8 40.2	R 10	315 5 330 5 345 5	1.5 37.5	337 11.6 15.8 351 46.4 15.8 6 21.2 15.7	6 17.8 12.3 54.5 6 30.1 12.4 54.5 6 42.5 12.3 54.5	50	02 36 02 51 03 20	03 32 03 42 04 02	04 13 04 20 04 36	03 56 03 58 04 02	04 11 04 15 04 23	04 29 04 35 04 47	04 51 04 58 05 15	
D 12 A 11	63 09.2	331 23.4 N2 346 22.6	03.3		47.1	304 29.4 N23 04.3 319 31.4 04.3	334 37.2 N 349 39.3	13.5		126 18.0 N26 42.4 357 52.9 N29 05.9	D 1	05	1.5 N17 38.8	20 55.9 15.7 35 30.6 15.7	N 6 54.8 12.3 54.5 7 07.1 12.3 54.5	N 40 35	03 42 03 59	04 19	04 49 05 00	04 06	04 30	04 57	05 28	
Y 10	93 14.2	1 21.7 16 20.9 31 20.1	03.7	16 12.0 31 12.6	47.3 47.4 47.6	334 33.4 04.2 349 35.4 . 04.2 4 37.4 04.2	4 41.4 19 43.6 . 34 45.7	13.6 . 13.6 13.7		62 16.6 N B 52.3 353 24.6 \$42 17.6 112 36.7 \$26 26.2	Y 1		1.6 40.8	50 05.3 15.6 64 39.9 15.5 79 14.4 15.6	7 19.4 12.3 54.6 7 31.7 12.2 54.6 7 43.9 12.3 54.6	20	04 12 04 35 04 52	04 44 05 02 05 18	05 09 05 26 05 40	04 11 04 16 04 20	04 41 04 50 04 58	05 14 05 27 05 39	05 50	
18	123 19.1	46 19.3 61 18.5 N2	04.8	61 13.9 N23		19 39.4 04.1 34 41.3 N23 04.1	49 47.9 64 50.0 N		Arcturus	146 03.4 N19 10.3	11	75 5		93 49.0 15.4		0		05 31		04 24	05 06	05 50	06 37	
20	153 24.0 168 26.5 183 28.9	76 17.6 91 16.8	05.5	91 15.2	48.1 48.2 48.4	49 43.3 04.1 64 45.3 04.0 79 47.3 . 04.0	79 52.1 94 54.3 109 56.4 .	13.8 13.8 13.9	Atria Avior Bellatrix	107 46.0 \$69 01.8 234 21.9 \$59 31.3 278 41.7 N 6 21.0	19	105 5	1.7 43.4 1.7 44.1	122 57.9 15.4	8 20.5 12.2 54.6 8 32.7 12.1 54.6	20	05 30	05 56 06 10	06 20	04 32	05 22 05 31	06 13	07 07 07	
22	198 31.4 213 33.9	121 15.2	06.6	121 16.5	48.6 48.7	94 49.3 03.9 109 51.3 03.9	124 58.6 140 00.7	13.9		271 11.1 N 7 24.4	2	135 5 150 5 165 5	1.7 44.7 1.8 45.4 1.8 46.0		8 44.8 12.1 54.7 8 56.9 12.1 54.7 9 09.0 12.0 54.7	35 40 45	05 47 05 53 05 59	06 17 06 25 06 35	06 44 06 54 07 06	04 40 04 43 04 46	05 37 05 43 05 50	06 35 06 45 06 56	07 36	
1100	228 36.3	151 13.5 N2 166 12.7	07.7		49.0	124 53.3 N23 03.9 139 55.3 03.8	155 02.8 N 170 05.0	14.0	Capella	264 00.4 \$52 42.0 280 47.9 N46 00.1	110	190 5	1.8 N17 46.6	195 49.4 15.2 210 23.6 15.1	N 9 21.0 12.0 54.7 9 33.0 12.0 54.7	S 50	06 06	06 46	07 21	04 51	05 59	07 09	08 20	
03	258 41.3 273 43.7 288 46.2	196 11.1		196 19.7	49.4	154 57.3 03.8 169 59.3 . 03.7 185 01.2 03.7	185 07.1 200 09.3 . 215 11.4	14.1 . 14.1 14.1	Denebola Denebola Diphda	49 37.4 N45 16.9 182 42.4 N14 33.6 349 04.9 \$17 58.6	01	210 5	1.9 48.6	224 57.7 15.0 239 31.7 15.0	9 45.0 11.9 54.7 9 56.9 11.9 54.7	54 56 58	06 13 06 16	06 56 07 02		04 55 04 58		07 22 07 30	08 36 09 00	
05	303 48.7	226 09.4	09.1	226 21.0 241 21.7 N23	49.7	200 03.2 03.7 215 05.2 N23 03.6	230 13.5	14.2		194 01.9 N61 44.6	0	240 5	1.9 49.9	268 39.7 14.9	10 09.8 11.9 54.9 10 20.7 11.8 54.9 N10 32.5 11.8 54.9	S 60	06 20	07 15	08 04	05 01 05 04	06 24		09 00	
0 07	333 53.6	256 07.8 271 07.0	09.8	256 22.3 271 23.0	50.0 50.1	230 07.2 03.6 245 09.2 03.6	260 17.8 275 19.9	14.3 14.3	Enath Eltanin	278 24.1 N28 36.6 90 49.8 N51 29.1 33 55.8 N 9 52.9	S O	285 5	1.9 51.2 1.9 51.9	297 47.5 14.8	10 44.3 11.8 54.9 10 56.1 11.7 54.8	Lat	Sunset	Twi	Naut.	10	Mod 11	12	13	
T 10	19 01.0	206 06.2 301 05.3 316 04.5	10.5 10.9 11.2	301 24.3	50.5	260 11.2 03.5 275 13.2 03.5 290 15.2 03.4	290 22.1 . 305 24.2 320 26.4	- 14.3 14.4 14.4	Fomalhaut	33 55.8 N 0 52.9 15 33.7 \$29 36.6	A 0 T 10 U 11	220 6	5.0 53.1	341 28,7 14,6	11 07.6 11.7 54.9 11 19.5 11.7 54.9 11 31.2 11.6 54.9	N 72	h m	h m	h m	h m 18 32	h m 20 39	h m	1	
R 12 D 11	44 00 4	331 03.7 N2 346 02.9	11.9		50.9	305 17.1 N23 03.4 320 19.1 03.4	335 28.5 N 350 30.6	14.5	Gienah	172 10.5 \$57 07.7 176 01.1 \$17 33.3	RI	0 5	0 N17 54.4	10 35.9 14.5 25 09.4 14.4	N11 42.8 11.6 54.9 11 54.4 11.5 54.9	N 70 68	22 35 21 47	1111	1111	18 19 18 09	20 12	22 27 21 47	24 15	
Y 14	94 13.3	1 02.0 16 01.2 31 00.4	12.3 12.6 12.9			335 21.1 03.3 350 23.1 . 03.3 5 25.1 03.2	5 32.8 20 34.9 . 35 37.1	14.5 . 14.6 14.6	Hadar Hamal Kaus Aust	148 59.9 \$60 23.1 328 11.1 N23 28.2 83 55.1 \$34 23.0	A 1		.0 56.3	54 16.2 14.4	12 05.9 11.5 54.9 12 17.4 11.5 54.9	66 64 62	21 17 20 54 20 37	//// 22 23 21 47	1111	18 00 17 53 17 47	19 37 19 24 19 13	21 20 20 59 20 43	23 14 22 40 22 15	
12	124 18.2	45 59.6 60 58.8 N2	13.3	46 28.8 61 29.5 N23	51.5 51.7	20 27.1 03.2 35 29.1 N23 03.2	50 39.2 65 41.3 N	14.7	Kochab	137 18.2 N74 08.9	1 10	75 5		83 22.8 14.3	12 28.9 11.4 54.9 12 40.3 11.3 55.0 N12 51.6 11.3 55.0	60	20 22 20 09	21 22 21 03	1111	17 42	19 04	20 29 20 20 17	21 55	
20	154 23.1 169 25.6 184 28.1	75 57.9 90 57.1 105 56.3	14.0 14.3	91 30.8	51.9 52.0 52.2	50 31.1 03.1 65 33.0 03.1 80 35.0 03.0	90 43.5 95 45.6 110 47.7	14.7 14.8	Markab Menkar Menkent	13 47.2 N15 12.8 314 24.6 N 4 05.8 148 17.6 \$36 22.9		105 5	5.1 58.8 5.1 17 59.5	112 29.2 14.1 127 02.3 14.0	13 02.9 11.3 55.0 13 14.2 11.2 55.0	56	19 59 19 49	20 47 20 34	22 00 21 36	17 33 17 30	18 49 18 43	20 07 19 58	21 25 21 14	
2	199 30.5 214 33.0	120 55.5 135 54.6	15.0 15.3	121 32.1	52.3 52.5	95 37.0 03.0 110 39.0 03.0	125 49.9 140 52.0	14.9		s 221 41.8 \$69 43.8	2	135 5 150 5 165 5	5.1 00.8	156 08.3 13.9	13 25.4 11.1 55.0 13 36.5 11.2 55.0 13 47.7 11.0 55.1	50	19 41 19 33 19 17	20 22 20 12 19 51	21 18 21 03 20 34	17 26 17 23 17 17	18 37 18 32 18 21	19 50 19 43 19 27	21 03 20 54 20 35	
01	244 37.9		16.0		52.8	125 41.0 N23 02.9 140 43.0 02.9		15.0	Nunki	308 53.5 N49 52.1 76 08.9 \$26 17.6					N13 58.7 11.0 55.1 14 09.7 11.0 55.1	35	19 04 18 53	19 35 19 21	20 12 19 55	17 12 17 07	18 12 18 05	19 15 19 04	20 19	
03	259 40.4 274 42.9 289 45.3	100 52.2 105 51.3 210 50.5	16.3 16.6 17.0	196 35.3	52.9 53.1 53.2	155 45.0 02.9 170 46.9 . 02.8 185 48.9 02.8	195 58.4 201 00.6 . 216 02.7	15.0 . 15.0 15.1	Peacock Pollux Procyon	53 32.7 \$56 43.5 243 38.6 N28 01.4 245 09.1 N 5 13.1	03	210 5	.2 03.9	228 52.1 13.5	14 20.7 10.9 55.1 14 31.6 10.8 55.1 14 42.4 10.8 55.2	30 20 N 10	18 44 18 27 18 13	19 10 18 51 18 35	19 41 19 18 19 01	17 03 16 56 16 50	17 58 17 46 17 36	18 55 18 39 18 25	19 54 19 34 19 17	
05	304 47.8	225 49.7	17.3		53.4	200 50.9 02.7 215 52.9 N23 02.7	231 04.8	15.1		e 96 14.3 N12 33.4	0	5 255 5	5.2 05.2	257 57.1 13.4	14 53.2 10.7 55.2 N15 03.9 10.7 55.2	0 \$ 10	18 00	18 22	18 47	16 44	17 27	18 12	19 01	
00 00 S 05	334 52.7 349 55.2	270 47.2	18.3	271 38.5	53.8	230 54.9 02.7 245 56.9 02.6		15.2 15.2	Regulus Rigel Rigil Kent.	207 52.8 N11 57.4 281 20.8 \$ 8 12.0	S OF		5.3 07.1	301 34.2 13.2	15 14.6 10.6 55.2 15 25.2 10.5 55.2 15 35.7 10.5 55.2	20 30 35	17 33 17 17 17 08	17 56 17 42 17 35	18 23 18 11 18 05	16 32 16 25 16 21	17 07 16 56 16 50	17 46 17 30 17 21	18 28	
U 10	20 00.1	285 46.4 300 45.5 315 44.7	18.9 19.2	301 39.8	54.1	260 58.8 02.6 276 00.8 02.5 291 02.8 02.5	306 15.5 321 17.7	. 15.3 15.3 15.4	Sabik	140 03.3 \$60 50.7 102 22.3 \$15 43.7	U 10	330 5 345 5	5.3 08.3	330 38.5 13.1	15 35.7 10.5 55.2 15 46.2 10.5 55.3 15 56.7 10.3 55.3	40 45	16 58 16 46	17 27 17 17	17 59 17 53	16 17 16 11	16 50 16 42 16 33	17 11 16 59	17 45	
D 12	50 05.0	330 43.9 N2 345 43.1	4 19.5	331 41.1 N23 346 41.8	54.4	306 04.8 N23 02.5 321 06.8 02.4	336 19.8 N 351 21.9	21 15.4	Schedar Shaula	349 51.2 N56 32.7 96 33.5 \$37 06.3	D 1			14 14.5 12.8	N16 07.0 10.3 55.3 16 17.3 10.2 55.3	52	16 31 16 25	17 07 17 02	17 46 17 43	16 05 16 02	16 23 16 18	16 44 16 38	17 11 17 02	
Y 1	80 10.0 95 12.4 110 14.9	0 42.2	20.2		54.7 54.8 55.0	336 08.8 02.4 351 10.7 . 02.3 6 12.7 02.3	6 24.1 21 26.2 . 36 28.3	. 15.5	Sirius Spica Subail	258 41.7 \$16 43.3 158 40.2 \$11 10.4 222 59.0 \$43 26.7	YI		.3 11.5	43 19.1 12.7	16 27.5 10.2 55.3 16 37.7 10.1 55.3 16 47.8 10.0 55.4	54 56 58	16 17 16 09 15 59	16 56 16 50 16 44	17 39 17 36 17 32	15 59 15 56 15 52	16 13 16 07 16 01	16 30 16 22 16 12	16 52 16 41 16 28	
17	125 17.4	45 39.8 60 38.9 N2	21.1		55.1	21 14.7 02.3 36 16.7 N23 02.2	50 20.5 51 30.5 66 32.6 N	15.6	Vega	80 44.6 N38 46.9	11	755	5.4 12.7 5.4 N18 13.4	72 21.4 12.6 86 53.0 12.4	16 57.8 9.9 55.4 N17 07.7 9.9 55.4	S 60	15 48	16 36 SUN	17 28	15 48		16 02	16 14	
19	155 22.3	75 38.1 90 37.3	21.7	76 45.7 91 46.3	55.4 55.6	51 18.7 02.2 66 20.7 02.1	81 34.7 96 36.9	15.7	Zuben'ubi	137 14.8 \$16 03.1 SHA Mer. Pass.	20	105 5	5.4 14.0 5.4 14.6	101 24.4 12.4 115 55.8 12.4	17 17.6 9.8 55.4 17 27.4 9.8 55.4	Day		Time 12 ^h	Mer.	Mer.		Age F	hase	
22	185 27.2 200 29.7 215 32.1	105 36.4 120 35.6 135 34.8	22.3	121 47.6	55.7 55.9 56.0	81 22.6 02.1 96 24.6 02.1 111 26.6 02.0	111 39.0 . 126 41.2 141 43.3	. 15.8 15.8 15.8		282 37.2 13 56		135 5 150 5 165 5		144 58.4 12.2	17 37.2 9.6 55.5 17 46.8 9.6 55.5 N17 56.4 9.5 55.5	10 d	00 ^h	12" m s 03 38	Pass. h m 11 56	Upper h m 10 34	Lower 22 55	d %		
	h m iss. 6 44.1		d 0.3		0.2	1 20 d 00	v 21	d 0.0	Jupiter	256 17.0 15 38 286 26.5 13 38		SD 1		SD 14.9	15.0 15.1	11	03 39	03 40	11 56	11 16	23 38 24 25	29 1	-	


12




Charles Babbage designed the Analytical Engine, a mechanical, programmable computer in 19th Century


- It was never built in Babbage's time due to a lack of manufacturing capabilities (ahead of his time!)
- Design called for punched cards to be fed into the machine to
 program it to perform mathematical calculations
- Output would go to a printer or punched cards
- See for details: <u>https://www.thoughtco.com/first-computer-</u> <u>gharles-babbages-1221836</u>

