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1. Introduction  

Ever since the first COVID-19 case was reported, the virus has affected the world and is 

now a pandemic. It is important for governments and related organizations to analyze and to 

understand how COVID-19 affects people economically, politically, psychologically, to carry 

out proper policy and counter plans to help people to get through various difficulties. Through 

this project, we find out people’s reaction to COVID-19 in different aspects, and the trend of 

people’s sentiment.             

We have extracted COVID-19 related news from the news dataset. After that we 

summarized the extracted dataset which is COVID-19 related news articles. We conducted 

article summarization using two different techniques, extractive summarization and abstractive 

summarization. After, we conducted sentiment analysis based on the summarized news, and used 

Power BI to visualize the trend of sentiment as well as the most frequent words appearing in 

positive news and negative news respectively. We figured out the difficulties that people are 

going through by analyzing the frequently appeared words in negative news and summarized 

news articles.  

 

2. Machine Learning Techniques  

Text summarization and sentiment analysis are two primary techniques that we used for 

the project. In general, there are two types of summarization which are extractive summarization 

and abstractive summarization. First of all, the key point of extractive summarization is 

weighting the important part of sentences. The summarization is done by selecting a subset of 

words that retain the most important points. From the original text, the technique weights the 

sentences based on similarity between sentences and selects sentences with higher rank. The 

following is the general pipeline for extractive summarization 

Input document → sentences similarity → weight sentences → select sentences with higher 

rank 

Abstractive text summarization is the text summarization technique that generates words 

from the model through prediction instead of extracting the words from the samples itself. This 

technique is able to generate summarization with the words that do not appear in the original 

input file if it is necessary. Consequently, the interpretation and examination of text using 

advanced natural language techniques is required to generate a shorter text but conveys the most 



 

critical information of the contents. Although there are many approaches to implement the 

generation of words, we chose RNN as our approach in this particular project. The following part 

is the general pipeline for abstractive summarization. 

Input document → understand context → semantics → create own summary. 

 Sentiment analysis refers to an analysis of extracting subjective impressions, feelings, 

attitudes, and individual opinions on a topic from a text. The result of the analysis is generally 

expressed in binary form as yes/no or good/bad. The main task of sentiment analysis is to 

identify positives, negatives, or neutrality in a given text, which is called as polarities of the text. 

For this project, we tried two extractive methods based on Cosine similarity and term 

frequency(TF) & Inverse Document Frequency(IDF) respectively. We also tried to use one 

abstract text summarization based on the tensorflow especially in sequence to sequence model. 

At last, we tried one technique of sentiment analysis based on the NLTK module from Python. 

 

2.1 Text Summarization 

2.1.1 Extractive Text Summarization 

Technique #1 Cosine Similarity  

Open Source: https://github.com/edubey/text-summarizer 

Technique #1 uses an unsupervised learning approach to find the sentences similarity and 

rank them. This technique does not require a process of training and building a model for the 

summarization since it fully relies on Python built-in libraries such as Natural Language Toolkit 

(NLTK) and NetworkX. It follows below steps: 

Input news article → split into sentences → remove stop words → build a similarity matrix → 

generate rank based on matrix → pick top N sentences for summary. 

First of all, it preprocesses a news article by splitting it into sentences and removing the 

stop words. This process is done by using the Python functions such as open files, read lines, and 

split, and the stop words are obtained by the stopwords function form the NLTK module. 

Second, it makes sentences into a bunch of vectors and finds the similarity among sentences. The 

approach to finding the sentences similarity in technique #1 is Cosine similarity, which is a 

measure of similarity between two non-zero vectors of an inner product space. It measures the 

cosine angle between two vectors to find the similarity between them, and an angle of 0 indicates 

the sentences are similar. The Cosine similarity is obtained by utilizing the cosine_distance 



 

function from the NLTK module. After that, it ranks the sentences based on similarity among 

each other and this process is done based on the NetworkX module At last, it outputs the 

summarized news article by picking top N sentences. N means the number of sentences that we 

want to summarize. 

 

Technique #2 Term Frequency(TF) and Inverse Document Frequency(IDF) 

Open Source: https://github.com/Shakunni/Extractive-Text-Summarization 

Technique #2 uses the TextRank algorithm to find the important sentences in each text 

file. TextRank is a graph based ranking algorithm for NLP, which decides the “importance of a 

vertex within a graph, based on a global information recursively drawn from the entire 

graph”(Sareen, 2018). TF is the number of times a word appears in the current sentence, and 

IDF means the number of a word appears in the entire set of all sentences. This technique is 

similar to technique #1 except for the step of tokenizing the text and building the similarity 

matrix. Besides, this technique does not make people decide how many sentences the final 

summarization includes. This technique follows below steps: 

Input news article → tokenize the document → generate term-document matrix(TD matrix) 

→ generate rank based on matrix  

Different from the previous technique which uses Python built-in function to tokenize 

the sentences, this approach uses the PunktSentenceTokenizer from the NLTK module. It is a 

default sentence tokenizer based on a pre-trained model which splits a text file at every period 

symbol. 

Instead of making a matrix manually, this approach uses CountVectorizer and 

TfidTransformer class and fit_transform function from the sklearn module in Python to create 

the normalized word-sentence matrix. It converts a collection of text to a matrix of token 

counts. The fit_transform method of CountVectorizer() class learns the vocabulary dictionary 

and returns a word-sentence matrix, and TfidTransformer is used for normalizing the matrix so 

that the value comes out in the range 0 - 1 

  In addition, instead of picking the number of sentences in the summarization, this 

approach makes a threshold for picking the sentences. It takes the mean value of normalized 

scores, and any sentence with the normalized score 0.2 more than mean value is considered to be 



 

threshold. Then it separates out the sentences that satisfy the criteria of having a value above the 

threshold. 

 

2.1.2 Abstractive Text Summarization 

Technique #3: Tensorflow text summarization 

Open Source : https://github.com/dongjun-Lee/text-summarization-tensorflow 

 Technique #3 is tensorflow implementation of abstractive text summarization by using 

seq2seq library. The seq2seq library which is the abbreviated form of the sequence to sequence, 

is a combined concept of RNN and encoder and decoder. The reason why we chose his technique 

is that it is the best for our current dataset which consists of numerous txt forms of articles and is 

able to adjust with it.  

 Its machine learning model consists of 4 different parts, which are word embedding, 

encoder, decoder, attention mechanism. The machine learning technique, especially the RNN is 

used in encoder and decoder. According to the author of the open source, encoder is used LSTM 

cell with stack_bidirectioanl_dynamic_rnn and Decoder uses LSTM Basic decoder for training, 

and BeanSearch Decoder for inference.  

 As we mentioned earlier, there are other ways to implement abstract text summarization 

by using another model of neural networks. However, we are specifically looking for the RNN 

model because of the characteristics of our dataset. Since our dataset consists of numerous 

articles related to one specific concept which is COVID-19, many synonyms related to COVID-

19 repeatedly appear throughout the dataset. However, if we use a simple neural network, it is 

able to identify the specific word in different parts of the text. On the contrary, the RNN which 

stands for recurrent neural network is able to identify the repeatedly advent vocabulary 

throughout the whole dataset if it is found in different parts of the text. 

 In addition to this concept of RNN, we need to use the encoder and decoder. Since our 

data inputs which are the txt form of articles, consist of different lengths. Also, our newly 

generated sentences have different length as well. Therefore, we have another network that takes 

input of length, and generates another output of different length. The encoder and decoder is the 

architecture that enables these functions.  

 The basic pipeline for this technique is like the following.  

Input news article → prep_data→ train → test → save result  



 

This technique provides the pre-trained model, which we used for this project but it also 

provides a custom training option as well. We tried to perform transfer learning with the 

provided dataset from the open source  and our dataset together, but due to lack of cpu 

performance of our machine and lack of time, we decided to leave it as a future work. Therefore 

we used only a pre-trained model for our dataset. 

  

2.2 Sentiment Analysis 

Technique #4 VaderSentiment of NLTK Module Library 

 Technique #4 uses the VaderSentiment of NLTK Module Library. Vader stands for 

Valence Aware Dictionary and Entiment Reasoner. The general pipeline of VaderSentiment is 

as follows. 

 Open the lexicon file → filter one letter words → check punctuation → calculate sentiment 

score → normalize score 

The first step is to read the lexicon file. The file consists of the average sentiment score 

of each word, derived from 10 people. Next, before calculating the sentiment score of the input 

document,  the module filters one letter words in the input document and checks for punctuation 

characters such as period, question mark and exclamation mark. If the length of a word is less or 

equal to 1, the word is excluded from calculation. 

When calculating the sentiment score, there are five major steps. First, the 

VaderSentiment checks for negative verbs such as aren’t or cannot. If there’s any, the score is 

weighted with -0.7. Next, the module considers uppercase letter words as emphasizing 

meanings and adds 0.733 if the sentiment of the word is positive and subtracts 0.733 if the 

sentiment of the word is negative. Third, when there's a modifier, we weight the noun by adding 

or subtracting 0.293 based on sentiment of the noun. Moreover, nouns are multiplied by weights 

based on their location in a sentence. So closer the noun is to the modifier, the bigger value of 

weight will be multiplied. After, when there’s the word “but”, the module considers as reverse 

of the content and multiplies the sentiment score by  0.5 if “but” comes before the content and 

multiplies by 1.5 if “but” comes after. Lastly, exclamation marks are considered as emphasis 

and each mark is weighted with 0.295. 



 

After the calculation is done, the sentiment score is normalized to a value between -1 

and 1. Then the module computes the ratio of the calculated sentiment scores. The ratio is 

computed as positive score / ( positive score + negative score + neutral score).  

 

3. Apply  

a. Technique #1 Cosine Similarity 

 The open source that we chose does not perfectly fit our project in terms of the format of 

input news content and the format of output result. Therefore, we write our own Python script 

based on the open source to be customized to our project. 

 First of all, we deleted the line of URL, ID, Date, Title, and Article since they are 

unimportant information that increase the performance of text summarization. After several 

times of testing and digging deep into each news article, we find out that all of the news have the 

same format which start with lines of unimportant information such as URL and ID. Figure 3.1 is 

a screenshot of part of an example news article. Since the program reads through each news 

article line by line, lines such as “Date: 0000-00-00 00:00:00” and “Article:” will be recognized 

as a single line and be represented as vectors for further comparison. Thus, we deleted those lines 

to maximize the performance of the text summarization process. 

 

Figure 3.1 screenshot of part of the example news contents 

After a deep exploration of the results, we found out that there are news that are consist 

with sentences with many “|” symbol and no actual meanings. They are the tabs of certain 

websites with useless information. Therefore, we deleted summarized sentences that has more 

than two “|” symbol. In addition, we also found out that there are sentences that are meaningless. 

Those kinds of sentences always have less than 6 words. Thus, we decided to only regard 

sentences with more than 5 words as sentences that are meaningful. 



 

 

Figure 3.2 contents with tabs 

 

Figure 3.3 contents with short and meaningless sentence

 

Figure 3.4 screenshot of an example of empty contents 



 

As we added more and more conditions to the summarization progress, we found out 

that some of the news articles might have no output or have less than N ranked sentences left. In 

this case, we save the title of the news and add it to the final output as a part of summarization 

since the title of a news contains many information about the news. 

After customizing the open source to our project, we add functions to read through all 

the COVID-19 news contents and summarize them one by one, and save them into an Excel file 

for further sentiment analysis. These processes were done with the xlwt, xlrd, xlutils modules 

from Python library. 

 

b. Technique #2 Term Frequency(TF) and Inverse Document Frequency(IDF) 

Instead of only using the PunktSentenceTokenizer function from NLTK module, we 

combined it with the token method that we wrote for technique #1 because the pre-trained 

model is not perfectly fit to our input data. We changed the first element of the tokenized 

sentience list that generated from PunktSentenceTokenizer to the first element that generated 

from the token method we wrote. The reason was that the first element of 

PunktSentenceTokenizer generated sentence list was everything starting from the first word 

until the first period. However, take Figure 3.1 as an example, the first period appears until the 

first paragraph ends, which means the first element in the generated sentence list from 

PunktSentenceTokenizer function includes a bunch of unimportant lines that will decrease the 

performance of the text summarization. Therefore, we replaced the first element with the lines 

without those unimportant information. As a result, we use the code in Figure 3.5 to select the 

final sentence list to be returned. FirstSentence is the first element in the token method we 

wrote, and sentences_list is the list that is generated by PunktSentenceTokenizer. If the length 

of sentencs_list is 1, we use the sentences_list as the final sentence list; and if firstSentence is 

already in the sentences_list, we just use the sentences_list as the final sentence list as well; 

otherwise we replace the first element in sentences_list with firstSentence and use it as final 

token sentence list. 

 



 

Figure 3.5 Process of token sentence list selection 

 Since some of the news contents have no meaningful contents just like Figure 3.3 and 

Figure 3.4, we just use title as the summarization in those kinds of situations. And we also add 

code regarding saving and looping. We add title to the summarization if the summarization if 

insufficient, and we loop through all the news contents and do summarization one by one, and 

save the results to an Excel file for further sentiment analysis  

 

c. Technique #3 Tensorflow text summarization 

This open source is made for generating titles of the articles. Therefore, it does not  

perfectly fit our original purpose which is  generating a summary of each article. We have made 

some modifications of the source code to adjust our data condition. This open source consists of 

5 parts which are prep_data.py, model.py, train.py, utils.py, and test.py. 

The prep_data.py prepares open source’s dataset to the format of tensorflow training. The 

dataset of open source consists of two parts which are training and validation. As we stated 

earlier, the purpose of this open source is generating titles of the articles. They used actual title 

data for the validation and used article data for training dataset. However, we did not make any 

changes on prep_data.py, since we used a pre-trained model. 

The utils.py contains the utility functions including parsing, building dictionary, dataset, 

batch and embedding functions of test.py and train.py. We did not make any modification on the 

functions that are used in train.py for the same reason. For the functions that used in test.py, we 

slightly modified the functions to adjust our dataset which includes over six thousands txt files in 

one directory. The code from open source only opens one text file which holds about 60,000 

lines. Once it iterates the text file and parses through the clean_title function, it returns only the 

article section of the text file to the tensorflow model in test.py. 

Test.py function is where the actual testing is performed. It is implemented in the open 

source data file format, we need to adjust the python script to our format. Therefore, we 

functionalize the test part to receive the text file directory as an input. Since we do not need to  

get the model each time we iterate the new text file from the directory, before the iteration starts 

we get the model first. After that, pass the text file to the util function for parsing. After that it 

gets predictions output as a result from the tensorflow model. Since it is abstractive text 

summarization, we do not want to get duplicated words. Therefore we check the duplicated 



 

words. After all the processing is done, we save summarized text into the excel format for 

sentimental analysis in the later part.  

 

d. Technique #4 VaderSentiment from NLTK module in Python 

Based on the sentiment score derived from the sentiment analysis using VaderSentiment 

module, we classified the articles into three categories. We labeled the article as positive if 

the score was larger than 0.5, neutral if the score is between 0 and 0.5, and negative if the 

score is less than 0.  

 

4. Validation 

 As our project regards natural language, we had to use human power to validate the 

results. We created a google form with 10 randomly selected articles. The google form consists 

of 4 questions for each article. Two of the questions ask testees to rate the summarization 

derived from the extractive methods, one asks testees to rate the summarization derived from 

the abstract method, and the last question asks testees about the sentiment of the original article. 

For questions regarding the summarization, testees give one point if the summarization is very 

poor, and five points if the summarization is very good. 

 

Figure 4.1 Result of rating summarization methods 

 The figure 4.1 shows the response of testees regarding three different summarization. The 

x-axis describes the used summarization method and the y-axis describes the sum of scores of 



 

10 articles that the testees rated. The extractive 1 refers to extractive summarization method 

using cosine similarity and extractive 2 refers to extractive summarization method using TF and 

IDF. The score of each article ranges between 1 and 5, 1 representing poorly summarized and 5 

representing excellently summarized. From the result, we can conclude that the extractive 

summarization method using cosine similarity was voted as the most powerful and accurate 

method and the abstractive method as the least powerful and accurate method. 

 

 

Figure 4.2 Result of answered sentiments of 10 articles 

 

 

Figure 4.3 Result of sentiment analysis on the selected articles 

 



 

 The figure 4.2 and 4.3 shows the result of validation of the sentiment analysis. The figure 

4.2 shows how the testees identified the sentiment of each article and the figure4.3 shows the 

sentiment of each article we have derived from our project. Currently, compared to the testees 

reponses, the result of sentiment analysis using the vader module shows approximately 50 

percent of accuracy. According to researchers, when evaluating the sentiment of a given text 

document, human analysts tend to agree around 80-85% of the time, and that is also the baseline 

researchers try to meet when they train a sentiment scoring system. (Barba, 2019). Therefore, 

the accuracy of our result is overall acceptable and there is room for improvement. 

 

5. Visualization and interpretation of Results 

After analyzing the result of sentiment analysis and the visualization of the result in 

Power BI, several phenomena and conclusions were found. First of all, people have a negative 

attitude to the situation in general, and the percentage of negative news is over two times than 

positive news. According to Figure 5.1, in the period of late April and early May, the percentage 

of negative and positive news is 57.3% and 23.88% respectively, which means over half of the 

news in the dataset are negative, and the number of negative news is around two times larger 

than the number of positive news. Following figure 5.2 shows the difference between positive 

and negative news in each month. The number of negative news is around two times larger than 

positive news in each month as well. In Figure 5.3, it is easy to find out that people’s negative 

sentiment grew much faster than neutral and positive sentiment. 

 



 

Figure 5.1 The percentage of neutral, positive, and negative news 

 

Figure 5.2 The number of neutral, positive, and negative news in April and May 

 

Figure 5.3 The growth of neutral, positive, and negative news respectively 



 

 

Figure 5.4 The word cloud of negative news 

 

Figure 5.5 The word cloud for positive news 

According to the visualization of the word cloud, people have a negative attitude to 

subjects such as government, health and economics. Word cloud is a collection of words 

presented in different sizes. The bigger and bolder a word is, the more frequent it’s mentioned 

within the given text. Based on the word cloud for negative news, except for obvious subjects 

such as coronavirus and cases, people have a negative attitude to government, university, health, 



 

economics, Trump, lockdown, and so on. Conversely, the words in positive news are in similar 

size except for some typical words such as Coronavirus and positive. People have a positive 

attitude to government, hospital, health, treatment, recovery, and so on. Several words have a 

high frequency in both positive and negative news, such as health and government. However, 

since the number of negative news is about two times larger than positive news, people’s 

sentiments are negative to those subjects in general. 

 

6. Conclusion 

6.1 Limitations and Performance Concerns 

 One of the limitations that we encountered while doing the project was that the news 

articles are not real-time data. Since K.T provided the data monthly only from late December 

2019 to early May 2020, text summarization and sentiment analysis will only be available 

during that time. Thus, it will be hard to find out people’s latest sentiment regarding COVID-19.  

In addition, since KT does not provide the data after May 5, searching for proper data after that 

date might be another difficulty. 

In the case of abstractive text summarization, we could not train our and build our own 

model due to lack of machine specification and lack of cpu performance. We spent over two 

days trying to train and build our model, but we gave it up and decided to use a pre-trained 

model due to the time limitation. That is the reason we have seen many <ink> values. The pre-

trained model does not contain the words such as COVID-19 and WHO. If we perform transfer 

learning upon the pre-trained model, the accuracy of abstract summarization will be increased.  

The last problem we had during this project was we weren’t able to get ideal accuracy 

on sentiment analysis which is about 70 to 80 percent. Since the polarity score is calculated 

based on the existing word dictionary in the python library, the sentiment of the words is not 

customized with COVID-19 issues. Some positive words in the positive word dictionary might 

specifically become negative in the COVID-19 news. For example, the word China is neutral in 

general, but it is actually negative in most of the COVID-19 news. 

 

6.2 Business Value 

Ideally, the result of the project could be useful for governments and global non-profit 

organizations to help people overcome the difficulties that come from COVID-19. This project 



 

can find out how people react to the virus and the difficulties people are going through 

worldwide and help to prepare a counterplan based on the experiences from countries that 

suffered COVID-19 earlier. For example, if a country finds out that its citizens are suffering 

from economics, the government of the country can give out stimulus checks just like what the 

Korean and American governments did. 

 
6.3 Reflection 

Through the project, we successfully finished extractive text summarization in two 

different techniques, and partially succeeded on the abstractive text summarization due to 

several limitations. We also had an overall acceptable performance on sentiment analysis. We 

believe that we could have a higher accuracy if we have more time and testers. 

In the meantime, we are able to find out the trend of people’s sentiment regarding 

COVID-19 and subjects that people have a positive and negative attitude to respectively. In 

general, people have a negative attitude regarding the situation of COVID-19, because the 

growth of negative sentiment is almost more than twice than the growth of positive sentiment. 

In addition, people have a negative attitude toward subjects like university and economics.  

 

7. Future Work 

 As we stated in the limitation, the accuracies of abstractive summarization and sentiment 

analysis can be improved. For the sentiment analysis, readjusting the positive and negative word 

banks to the words related to COVID-19 words such as lockdown and COVID-19 would 

increase the performance of it. We expect to have up to 80 percent of accuracy as our future 

goal of ideal outcome of sentiment analysis. For abstractive summarization technique, since 

words such as WHO or name of the disease weren't included in the pre-trained datasets, 

performing transfer learning to the pre-trained model would minimize the appearance of  <unk> 

values and increase the performance overall. 

 

8. Work Cited and Appendix 

Alsaqer, A., & Sasi, S. (2017). Movie Review Summarization and Sentiment Analysis 

using RapidMiner NetACT, 329-335. doi: 10.1109/NETACT.2017.8076790 



 

Barba, P. (2019, July 10) Sentiment Accuracy: Explaining the Baseline and How to Test 

It. Retrieved June 18, 2020, from https://www.lexalytics.com/lexablog/sentiment-

accuracy-baseline-

testing#:~:text=Setting%20a%20baseline%20sentiment%20accuracy,training%20a%20se

ntiment%20scoring%20system. 

Bhargava, R., Sharma, & Y., Sharma, G. (2016). ATSSI: Abstractive Text 

Summarization using Sentiment Infusion. Procedia Computer Science, 404-411. doi: 

10.1016/j.procs.2016.06.088 

Dubey, P. (2018, December 23). Understand Text Summarization and create your own 

summarizer in python. Retrieved June 18, 2020, from 

https://towardsdatascience.com/understand-text-summarization-and-create-your-own-

summarizer-in-python-b26a9f09fc70 

Hamzah, F., Lau C .H., Nazri, H., Ligot, D. V., Lee, G., Tan, C. L., . . . Salunga, R, E. 

(2020). CoronaTracker: World- wide COVID-19 Outbreak Data Analysis and Prediction. 

Bull World Health Organ, doi: http://dx.doi.org/10.2471/BLT.20.255695  

Jahanbin, K., & Rahmanian, V. (2020). Using twitter and web news mining to predict 

COVID-19 outbreak. Asian Pacific Journal of Tropical Medicine, 13. 

Opidi, A. (2019, April 15). A Gentle Introduction to Text Summarization in Machine 

Learning. Floydhub. Retrieved from https://blog.floydhub.com 

Sareen, S. (2018, August 16). Text Summarisation with Gensim (TextRank Algorithm). 

Retrieved June 17, 2020, from https://medium.com/@shivangisareen/text-summarisation-

with-gensim-textrank-46bbb3401289 



 

Urologin, S. (2018). Sentiment Analysis, Visualization and Classification of Summarized 

News Articles: A Novel Approach.  IJACSA 9(8), 616-625. doi: 

10.14569/IJACSA.2018.090878 

http://www.aihub.or.kr/problem_contest/covid19 

https://github.com/edubey/text-summarizer/blob/master/text-summarizer.py 

https://github.com/Shakunni/Extractive-Text-Summarization 

https://github.com/dongjun-Lee/text-summarization-tensorflow 

https://www.absentdata.com/power-bi/sentiment-analysis-in-power-bi/ 

https://github.com/Stephaniejinn/Test_Summarization-Sentiment_Analyze 

 


