
MILESTONE 3
CSE 351

Haein Park
Pyungkang Hong
Wha Suk Lee

TRAINING AND TEST DATA
The chart below shows how large our dataset is,

 NAME AMOUNT (# of files)

1 Ramnit 1541

2 Lollipop 2478

3 Kelihos_ver3 2942

4 Vundo 475

5 Simda 42

6 Tracur 751

7 Kelihos_ver1 398

8 Obfuscator.ACY 1228

9 Gatak 1013

Due to the limited size of the storage of our machines, we cannot train nor test models on the
full dataset. Therefore, we set up two scenarios:

Scenario \ Type Training (total) Test (total)

Small 315 (35 * 9) 63 (7 * 9)

Large 5334 1332

**The first scenario is using a small subset of data. For each class of malware, 35 files are used
for training and 7 files for testing. The other scenario is using a relatively large subset of data. If

a class has more than one thousand files, we fix the size of data to be one thousand. 80% (800
files) is used for training and 20% (200 files) for testing. If a class has less than one thousand
files, use 80% of them for training and the remaining for testing.

Feature Summary

train_data_750.csv 4gram

train_dll.csv Library dependencies

train_frequency.csv How often each two bytes appears

train_instr_frequency.csv How often each mnemonic appears

train_asm_image.csv A gray-scale image representation

MACHINE LEARNING TECHNIQUES

We decided to begin from basic classification techniques to advance.

1. KNN
Perhaps the most naive approach would be the k-nearest neighbor algorithm, KNN in
short. The name already explains that an input data’s class is determined by the K
nearest neighbors. Left plots are from the small subset of data, whereas right plots
are the large subset of data.

Visualization of 4gram using PCA (n=3)

Visualization of DLL using PCA (n=3)

Visualization of Instruction Frequency using PCA (n=3)

Visualization of Frequency using PCA (n=3)

Visualization of a gray-scale image PCA (n=3)

Although no classification is applied yet, we can find an interesting observation in the
visualization of 4gram. Red and orange dots are easily separable while the remaining classes
are mostly tangled up. The orange refers to a malware class ‘Lollipop’. The red dots, ‘Ramnit’
class, also look promising.

**Please note that PCA is only for visualization. When we actually train and test the model, no
dimensionality reduction is performed because we’ve found that it deteriorates the accuracy
significantly. (For example, when the model was trained and tested with PCA-ed data with n = 2,

the highest accuracy we could achieve was 20%) Meanwhile, normalization step is taken with
the help of “StandardScaler” from “sklearn.preprocessing”

(Before the normalization)

(After the normalization)

We then trained and tested KNN models, using a single feature, to see how accurate a single
feature can achieve.

Confusion matrices for KNN trained with 4gram

Confusion matrices for KNN trained with dll

Confusion matrices for KNN trained with Frequency

Confusion matrices for KNN trained with Instruction Frequency

Confusion matrices for KNN trained with a gray-scale image

Only ‘4gram’ has achieved high performance when used alone, its accuracy improved from 0.92
to 0.99. For other features, you can notice that instead of the diagonal of their confusion matrix
getting darker, the whole left side of their matrix is getting darker. It means their chance of
false-negative has increased.

 Small Large

4gram 0.92063 0.988739

dll 0.15873 0.132132

Frequency 0.111111 0.141982

Instruction frequency 0.09523 0.165165

A gray-scale image 0.19476 0.167417

Precision and recall of 4gram-trained KNN (Up: Small dataset. Down: Large dataset)

**Precision and recall for other features are not included intentionally since their accuracies are
below 0.20. You can understand them visually via their confusion matrices.

**Combining features are attempted to check if any combination helps to improve accuracy, but
the accuracy either stays or decreases.

2. Neural Network
We then came up with a neural network, a state-of-the-art ML technique. A neural

network is used to experiment if Ngram’s performance is consistent in other ML algorithms.
Furthermore, we know CNN has a tremendous capability in classifying images. Therefore, a
gray-scale image will be tested as well.TensorFlow 2 is used to build a neural network. Again,
no dimensionality reduction is applied due to the aforementioned problem. Two neural networks
are built: a simple neural network with ngram and a convoluted neural network with a gray-scale
image.

(Simple Neural Network Architecture)

(Simple Convolutional Neural Network Architecture)

2-1. Neural Network with Small Dataset

(Small dataset. Prediction scores for both networks)

When using the small dataset, training accuracies were 0.9016 and 0.7206 for simple network
and CNN, respectively. However, when tested, 0.1270 and 0.1111 were returned. Therefore, we
can say they are highly overfitted.

(Confusion matrices for simple network and CNN)

Precision and recall of simple network and CNN (Small dataset)

(Nan is treated as 0)

2-2. Neural Network with Large Dataset

(Large dataset. Prediction scores for both networks)

Now, we used the same model architectures and trained with the large dataset. The training
accuracies were 0.9636 and 0.7593 for simple network and CNN, respectively. Again, when
tested, the accuracies decreased significantly, 0.1329 and 0.150150, respectively.

(Confusion matrices for simple network and CNN)

Precision and recall of simple network and CNN (Large dataset)

3. XGBoost
Finally, We tested XGBoost for our datasets.

We chose to use XGBoost for this project because of two specific reasons. First,
XGBoost is one of the most popular and powerful ML techniques that currently exist,
which led many teams to win a variety of Kaggle competitions. Second and perhaps the
most crucial reason, the first team of this particular Kaggle challenge,
“Saynotooverfitting,” proposed that this technique is the key feature of their project,
which contributed to their win for the most.

To train and use XGBoost, few hyperparameters should be provided to the model.

● Max_depth: this is the depth of the tree used by XGBoost. If the depth is too
small, the model would not be delicate enough to classify accurately, and if the
depth is too large, the model would end up overfitted.

● Eta: This is similar to the learning rate. This hyperparameter adjusts the weight
on each step. 0.3 is the default value for most of the time, and often, lowering the
value a little would improve the performance.

● Objective: This hyperparameter is to tell the model what type of result is
expected. Setting it as multi: softmax would return the best of many
classifications. Setting it as multi: softprob will return respective probabilities for
each classification.

● Num_class: This hyperparameter tells the model how many target classes are
there.

We followed to use the default values for the hyperparameter and observed the result.
As mentioned above, there are two scenarios and several differences in datasets, in
accordance with the scenarios. Like the other machine learning techniques, we applied
XGBoost for the following train and test datasets: small_all_features, small_asm_image,
small_data_750, small_dll, small_frequency, small_instr_frequency, large_all_features,
and large_data_750.

Here are our results of applying XGBoost to the datasets.

Small Datasets

Confusion Matrix for XGBoost with a small gray-scale image datasets

Confusion matrix for XGBoost with small 4grams datasets

Confusion matrix for XGBoost with small dll datasets

Confusion matrix for XGBoost with small two bytes frequency datasets

(train_frequency.csv and test_frequency.csv)

Confusion matrix for XGBoost with small instruction frequency datasets

Confusion matrix for XGBoost with small all features datasets

Large Datasets

Confusion matrix for XGBoost with large 4gram datasets

Confusion matrix for XGBoost with large all features datasets

To sum up the results of XGBoost, compared to the other algorithms, XGBoost showed
relatively stronger performance.

 Accuracy

small_asm_image 0.71429

small_4gram 0.96825

small_dll 0.82539

small_frequency 0.92063

small_instr_frequency 0.90476

small_all_features 0.96825

large_4gram 0.99174

large_all_features 0.99625

As you can see, the large_all_features dataset has recorded the highest accuracy and
the small_asm_image has recorded the lowest accuracy for XGBoost.

Below are the precision and recall tables of small_4gram and large_4gram.

Small_4gram

Large_4gram

Since we are going to compare the performance of all algorithms we used by the 4gram
features in the conclusion section, we only included the tables for 4gram features.

CONCLUSION
To sum all the results obtained from Milestone 3, we have used three algorithms to
tackle the malware classification challenge. Out of KNN, Convolutional Neural Network,
and XGBoost, XGBoost showed the best performance in general.

It’s also interesting that CNN has performed really bad in this particular project. In other
words, a gray-scale image representation of .bytes files is not useful.

We chose the 4gram feature to be the standard of comparison among the algorithms.
Intuitively, we thought that the 4gram feature would explain many things about the
dataset. For example, suppose you’re reading a book. A sentence explains more about
its context than a single word. We thought this intuition can be applied in 4gram as well.
Therefore, rather than using other criteria, we decided to use the 4gram feature to be our
determinant of performance.

Using 4gram as the key feature, we decided to compare the performance of the three
algorithms based on their precision, recall, and accuracy.

Small dataset: Precision, Recall, and Accuracy

KNN

Neural Network

XGBoost

 Accuracy

KNN 0.92063

Neural Network 0.1270

XGBoost 0.96825

Large Dataset: Precision, Recall, and Accuracy

KNN

Neural Network

XGBoost

 Accuracy

KNN 0.988739

Neural Network 0.1329

XGBoost 0.99174

FUTURE WORK
- Check if the accuracy changes if N changes in the Ngram.
- Can this algorithm be applied to sentiment analysis as well?
- Would this algorithm be applicable to modern programming languages as well?

- Ex. Java, Python, C, etc
- If this project was done in unsupervised learning, would we be able to find out other

classes?

GitHub

https://github.com/WhaSukGO/CSE351_Milestone3

