Microsoft Malware Prediction

mm Microsoft

CSE 351 Final Project
By Rediet and Merry

Submitted to:

Professor Pravin Pawar

Spring 2020, SUNYK CSE 351



Content

INtrOAUCHION. .. ...t e 3
L@ o) 7015 4 4
Light GBI ... 5
Data PrePTOCESSINE. .. ..ttt ettt et ettt e e e et et et et et 7
MemOTY UHHIZAtION. .. ..ottt e et et e e e et e e e e aaeenas 11
MoOdel SELECHION. ...ttt e 13
Parameter tuning, Accuracy prediCtion. ... .....o.eeveieieeie i 15
Neural NetWork. . ... 17
Random FOrest. ... 26
Data ViSualization. ... ..o 30
(70 4 Ted LT3 T )& PP 33
Future Work. .. ..o 34

RO OIEIICES . ..ottt e e 35



Introduction

Malicious software is abundant in a world of innumerable computer users, who are constantly faced with
these threats from various sources like the internet, local networks and portable drives. Malware is
potentially low to high risk and can cause systems to function incorrectly, steal data and even crash.
Malware may be executable or system library files in the form of viruses, worms, Trojans, all aimed at
breaching the security of the system and compromising user privacy. Typically, anti-virus software is
based on a signature definition system which keeps updating from the internet and thus keeping track of
known viruses. While this may be sufficient for home-users, a security risk from a new virus could

threaten an entire enterprise network.

The primary goal of this competition is to predict a Windows machine’s probability of getting infected by
various families of malware, based on different properties of that machine. Hence, the data required for
malware prediction can be any information about the state of a computer which is hit by a malware attack.
As there are various types of malware attacks, machines may behave differently when attacked.
Therefore, it is useful to collect a large amount of data about computers that are attacked. Most of the data
comes from the system behavior of the machine and the type of the machine. For our case Microsoft has

done all the process of capturing the information from a windows defender through a long course of time.

Therefore, we have chosen to use the Kaggle dataset on Microsoft Malware Detection. As the kaggle
dataset is highly organized and has all the required (sampleSubmission, training, and testing) data, it is
suitable to study and preprocess easily. In addition to that, many Kaggle competitors used the dataset in
the past, and under the discussion section many useful tips about preprocessing the dataset are given.

Therefore, we decided to use Kaggle as our primary source of data.



Project Objectives

The objective of this project is to analyze the different solutions that the competitors of kaggle
community brought and compare their solutions in order to provide the pros and cons of different
methods and approaches that were used to tackle this problem and possibly come up with a
conclusion on which solution is more effective for predicting the malwares effectively into their
respective families. In doing so we hope to be part of the group that is trying to solve the
challenge that microsoft is proposing. To explain the objective in great detail, the goal of this
competition was to predict a Windows machine’s probability of getting infected by various
families of malware, based on different properties of that machine. This can be accomplished by
the training data that microsoft made available which contains these properties which are the
machine’s infections that were generated by Windows Defender which combines heartbeat and
threat reports collected by Microsoft's endpoint protection solution,

Here are specific objectives:

1, Analyze the codes that were submitted on the competition and understand how different
people approached the problem inorder to investigate the accuracy of the model presented and its

viability to different sorts of malware detection.

2, Observe the execution information whereby we speculate the amount of time the execution of
the code took together with the memory usage, the readability and simplicity of the code and its
quality as well. To do so we will be using the execution information presented by kaggle

competitors.

3, Examine the significant parameters that affect the model and figure out which ones give better
results. This includes scrutinizing the optimizations used and the hyperparameter tuning that

were considered.



Machine learning techniques used
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What is Light GBM

e [tis a gradient boosting framework that uses tree based learning algorithms.
e [t is designed to be distributed and efficient with the following advantages:
e  Support of parallel and GPU learning.
e  Capable of handling large-scale data.

Advantages of Light GBM

1.  Faster training speed and higher efficiency: Light GBM use histogram based algorithm
i.e it buckets continuous feature values into discrete bins which fasten the training
procedure.

2.  Lower memory usage: Replaces continuous values to discrete bins which result in lower
memory usage.

3.  Better accuracy than any other boosting algorithm: It produces much more complex
trees by following leaf wise split approach rather than a level-wise approach which is the
main factor in achieving higher accuracy. However, it can sometimes lead to overfitting
which can be avoided by setting the max_depth parameter.

4.  Compatibility with Large Datasets: It is capable of performing equally good with large
datasets with a significant reduction in training time as compared to XGBOOST.

5. Parallel learning supported.

Level-wise tree growth

Level-wise tree growth in XGBOOST.
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Data preprocessing

The raw data is very high dimensional and has many missing values. The size of data is also
comparatively large.Each row in this dataset corresponds to a machine, uniquely identified by a
Machineldentifier. HasDetections is the ground truth and indicates that Malware was detected on the
machine. Using the information and labels in train.csv, we predict the value for HasDetections for each

machine in test.csv. A detailed description of the nature of the data will be provided in the next section.

As we all know the big challenge that is related to most machine learning training and testing processes is
data. Firstly getting the right data. Second, preparing the data so that it can properly fit the algorithm or
whatever predicting and testing architecture that we use. Hence in our project here as well, we have tried
preprocessing the data. It was especially so important as the data was too big to even be opened. Hence
reducing the size of the data and removing less necessary or unnecessary columns was very crucial. Here

we have provided the data cleaning and preprocessing steps with description.

Removing unnecessary columns:
As the data is highly dimensional in this specific kaggle challenge, it is really difficult to do anything with
it. So we can reduce the column dimension by eliminating less useful columns which have.

1, Mostly-missing Feature- in the given data set there are around 2 columns that have more than
99% of missing values. Hence removing them wouldn’t affect the dataset at all since most of the values in

under the column are missing

2, Too-skewed features - these are the columns whose majority categories cover more than 99%
of occurrences. Hence there is no need to keep them. Normally highly skewed data give us too little

information. When 1% of data with other values have the same distribution of target features.

3, Highly-correlated features- correlations between columns show how related the two columns
are. Hence, after testing correlations between columns, we picked up pairs whose correlation is greater
than 0.99 compared to the distribution of the features in the pairs and also correlation with high

detections. Then the minor columns can be eliminated.

Throughout this process, it is possible to eliminate 17 columns without losing significant information.



One Hot Encoding

One hot encoding is a process by which categorical variables are converted into a form that could

be provided to ML algorithms to do a better job in prediction.

Why is just label encoding not sufficient to provide to the model for training? Why do we need
one hot encoding?

Problem with label encoding is that it assumes higher the categorical value, better the category.
In addition to that inorder to perform “binarization” of the category and include it as a feature to
train the model, one hot encoding was much better. The images below show how we encode
using hot encoding through vectors before we pass the category when we had to use a machine

learning algorithm.




Transforming features and Encoding

The code below shows how the row data was transformed using label encoder and one hot
encoder. And then values more than 1000 observations were taken as a sample.

for column in train.columns.tolist()[1:-1]:

train[column] = train[column].astype('str"')
test[column] = test[column].astype('str')

#Fit LabelEncoder
labelEncoder = LabelEncoder().fit(
np.unique(train[column].unique().tolist()+
test[column].unique().tolist()))

#At the end € will be used for dropped values
train[column] = labelEncoder.transform(train[column])+1
test[column] = labelEncoder.transform(test[column])+1

aggregate_train = (train
.groupby([column])
.aggregate({ 'MachineIdentifier':'count'})
.reset_index()
.rename({ 'MachineIdentifier':'Train'}, axis=1))
aggregate_test = (test
.groupby([column])
.aggregate({'MachineIdentifier': 'count'})
.reset_index()
.rename({ 'MachineIdentifier':'Test'}, axis=1))

aggregate = pd.merge(aggregate_train, aggregate_test, on=column, how='outer').replace(np.nan, ©)

#Select values with more than 1608 observations
aggregate = aggregate[(aggregate[ 'Train'] > 10@ee8)].reset_index(drop=True)

After that the biggest challenge was having unbalanced testing and training values hence we
dropped the ones that were unbalanced. That is how we dealt with this challenge as our mentor

was mentioning that as a good solution for this kind of case.



#Drop unbalanced values

aggregate = aggregate[(aggregate['Train'] / aggregate['Total'] > ©.2) & (aggregate['Train'] / aggregat
e['Total"] < ©.8)]

aggregate[column+'Copy'] = aggregate[column]

train[column] = (pd.merge(train[[column]],
aggregate[[column, column+'Copy']],
on=column, how='left')[column+'Copy']
.replace(np.nan, ©).astype('int').astype('category'))

test[column] = (pd.merge(test[[column]],
aggregate[[column, column+'Copy']],
on=column, how='left')[column+'Copy']
.replace(np.nan, @).astype('int').astype('category'))

del labelEncoder, aggregate_train, aggregate_test, aggregate, column
gc.collect()

y_train = np.array(train[ 'HasDetections'])
train_ids = train.index
test_ids = test.index

del train['HasDetections'], train['MachineIdentifier'], test['MachineIdentifier']
gc.collect()

#Fit OneHotEncoder
ohe = OneHotEncoder(categories="auto', sparse=True, dtype='uint8').fit(train)

#Transform data using small groups to reduce memory usage
m = 1leeeee
train = vstack([ohe.transform(train[i*m:(i+1)*m]) for i in range(train.shape[@] // m + 1)])

test = vstack([ohe.transform(test[i*m:(i+1)*m]) for i in range(test.shape[@] // m + 1)])
’ . =30 S SV 00 0. S 0= 1 =S 1 RS ML W 2= R

After fitting the one hot encoder we were dealing with memory usage which we will discuss

briefly in the next page.
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Memory utilization

#Transform data using small groups to reduce memory usage

m = 108008

train = vstack([ohe.transform(train[i*m:(i+1)*m]) for i in range(train.shape[®] // m + 1)])
test = vstack([ohe.transform(test[i*m:(i+1)*m]) for i in range(test.shape[@] // m + 1)])
save_npz('train.npz', train, compressed=True)

save_npz('test.npz', test, compressed=True)

del ohe, train, test
gc.collect()

skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
skf.get_n_splits(train_ids, y_train)

lgb_test_result = np.zeros(test_ids.shape[@])
counter = ©

print('\nLightGBM\n")
for train_index, test_index in skf.split(train_ids, y_train):
print('Fold {}\n'.format(counter + 1))
train = load_npz('train.npz')
X_fit = vstack([train[train_index[i*m:(i+1)*m]] for i in range(train_index.shape[@] //
X_val = vstack([train[test_index[i*m:(i+1)*m]] for i in range(test_index.shape[@] //

X_fit, X_val = csr_matrix(X_fit, dtype='float32'), csr_matrix(X_val, dtype='float32')
y_fit, y_val = y_train[train_index], y_train[test_index]

del train
gc.collect()

Vstack Vs simple approach

m+ 1)]
m+ 1)]

X_fit = vstack([train[train_index[i*m:(i+1)*m]] for i in range(train_index.shape[0] // m + 1)])

Vs
X_fit = train[train_index]

Using vstack helps to fit the kernel inside the memory

11



Criterias used for Unbalanced Values

The criteria that was used to deal with unbalanced values between train and test was by
analyzing the number of observations between the two. This was important because such groups
may have different density functions and it can have a negative impact on the model. Some

values are temporary and have a limited life cycle.

In production it might be necessary to know what categories are temporary to exclude them from
the model or predict the behavior of the categories by the time series row, The main reason was

to reduce memory usage. Also small groups have little impact on the final score.
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Model Selection

lgb_model = lgb.LGBMClassifier(max_depth=-1,
n_estimators=300080,
learning_rate=0.05,
num_leaves=2%*12-1,
colsample_bytree=8.28,
objective='binary',
n_jobs=-1)

lgb_model.fit(X_fit, y_fit, eval _metric='auc’,
eval_set=[(X_val, y_val)],
verbose=10@, early_stopping_rounds=1€0)

del X_fit, X_val, y_fit, y_val, train_index, test_index
gc.collect()

test = load_npz('test.npz')

test = csr_matrix(test, dtype='float32')
lgb_test_result += lgb_model.predict_proba(test)[:,1]
counter += 1

del test
gc.collect()

LGBMClassifier uses a scikit-learn style api. That was the reason why we used the classifier
right away as our model. But if we use original Igbm, we might need to create LGB.datasets first

and then pass it which is a lot of work.

The parameters are initialized as it is shown in the snap above. It is especially known that
learning rate affects accuracy and we found that 0.05 performs better. It is a hyper parameter

which can be improved later on.
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Parameter tuning

colsample bytree - allows to use all the 82 variables without removing the bad ones. Using
small values for this gives better results. This is because now the bad ones get randomly
"removed" as new trees are added. (Trees that use bad ones get low weighting.). However, this

might change with some optimization.

There were also other hyper parameters that were affecting the algorithm which are like the
learning rate, the number of leaves, the depth and the like. Most of them we initialized them all

as follows:
max_depth=-1,
n_estimators=30000,
learning_rate=0.05,
num_leaves=2%**12-1,
colsample_bytree=0.28,
objective='binary’,

n_jobs=-1)
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Accuracy

LightGBM
Fold 1

Training until validation scores don't improve for 18@ rounds
[100] valid ©'s auc: ©.732095 valid_@'s binary_logloss: ©.604546
[200] valid_@'s auc: ©.737657 valid_e's binary_logloss: ©.598879
[300] valid_@'s auc: ©.7393 valid_e's binary_logloss: ©.596231
[400] valid @'s auc: ©.739513 valid 8's binary_logloss: ©.595938
Early stopping, best iteration is:

[385] valid_@'s auc: ©.739521 valid_©'s binary_logloss: ©.59594
Fold 2

Training until validation scores don't improve for 100 rounds
[10@] valid _@'s auc: ©.73142 valid_e's binary_logloss: ©.604938
[200] valid_©'s auc: ©.736959 valid_e's binary_logloss: ©.598438
[300] valid @'s auc: ©.738506 valid @'s binary_logloss: ©.596792
[400] valid ©'s auc: ©.738716 valid_©'s binary_logloss: ©.596588
Early stopping, best iteration is:

[389] valid_©'s auc: ©.738736 valid_@'s binary_logloss: ©.596495
Fold 3

Training until validation scores don't improve for 100 rounds
[100@] valid_@'s auc: ©.731932 valid_e's binary_logloss: ©.605088
[200] valid @'s auc: ©.737496 valid _@'s binary_logloss: ©.598079
[300] valid ©'s auc: ©.739126 valid_©'s binary_logloss: ©.596316
[400] valid_@'s auc: ©.739375 valid_©'s binary_logloss: ©.596083
[5e0] valid_©'s auc: ©.739283 valid_@'s binary_logloss: ©.596065
Early stopping, best iteration is:

[417] valid ©'s auc: ©.739382 valid _©'s binary_logloss: ©.595997

As we can see from the result on the right side the accuracy has not improved after the second
fold. And the binary logloss also started increasing. However after the 300th iteration of the 3rd
fold, the accuracy again started to increase resulting in 73.93%. Here is the detailed information
on which fold gabe the best accuracy. The best accuracy for the first fold is 73.8998% at
iteration 402. The best accuracy for the second fold is 73.9095% at iteration 390. The best
accuracy for the third fold is 73.939382% at iteration 417.
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Prediction

Prediction is divided by 5 since it's a 6 fold CV. This is more of like a 6 Models kind of average

del X _fit, X_val, y_fit, y_val, train_index, test_index
gc.collect()

test = load_npz('test.npz')

test = csr_matrix(test, dtype='float32')
lgb_test_result += lgb_model.predict_proba(test)[:,1]
counter += 1

del test
gc.collect()

The above code shows how we loaded the test data that we already preprocessed and saved and

how we used the model “lgb_model” to predict the test data.

Run time

The algorithm took around 24262.4 seconds which is around 6 hours for 6 folds each with 100

rounds each round being 100 iterations.

16
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Data Preprocessing

We first studied three categorical features encoding techniques which are Drop categorical

variables, Frequency encoding, and One-Hot encoding.

Drop Categorical variables: This is the easiest technique of all. The mechanism is to remove

categorical variables which do not contain any useful information. We used this technique to
preprocess our dataset on milestone 2, however, it turns out that our data has many categorical
variables of which categories' frequency is very important to study. Therefore, we decided not to

use this technique.

Frequency encoding:This technique uses the frequency of each category as labels.It helps the
model to understand and assign the weight to categories according to the nature of the data.
Many of the categorical variables in our dataset had frequently appearing categories and we
believed it would be important to study about these categories so we decided to apply Frequency

encoding technique.

A ProductName

e
win8defender

29 Valid m 5.92m

Mismatched B 0

mse 1% Missing m a0
Unigue 5]

Most Common winf8defender

A EngineVersion

11152001 43% Valid | £8.92m
Mismatched B a
11.15100.1 41%  Missing m 0
Unigue 70
Most Common 111520041
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Snipped image from Kaggle that shows the most common categories from categorical variables.

One-Hot encoding: This technique represents categories in the form of vectors. By creating
columns, One-Hot-encoding makes it easy to indicate the presence/absence of each category.
This technique also works well if there's no ordering in the categorical data. As our dataset had
many categories missing and no clear ordering, using One-Hot-encoding to preprocess our data

was the best choice to feed into the Neural Network model.

After carefully studying the aforementioned encoding techniques, we decided to identify which
categories should be encoded with which encoding technique. We identified the encoding
techniques for the categories according to the nature of the categories we studied on kaggle. For
the categorical variables which have frequently appearing categories, we decided to encode them
using frequency encoding; for categorical variables which have many missing categories and not

many categories, we decided to encode them using one-hot encoding technique.

import pandas as pd, numpy as np, 05, gc

# LOAD AND FREQUENCY-ENCODE
frequencyEncoding = ["EngineVersion', "AppVersion', "AvSigVersion®, 'Census_0SVersion']
# LOAD AND ONE-HOT-ENCODE
oneHotEncoding = [ 'RtpStateBitfield’, 'IsSxsPassiveMode’, 'DefaultBrowsersIdentifier’,
'BVProductStatesIdentifier’, 'AVProductsInstalled®, 'AVProductsEnabled®,
'Countryldentifier’, 'CityIdentifier’,
'GeoNameldentifier', 'LocalekEnglishNameIdentifier',
‘Processor’, '0OsBuild’, 'OsSuite’,
‘SmartScreen’, 'Census_MDC2FormFactor’,
‘Census_OEMNameIdentifier’,
‘Census_ProcessorCoreCount’,
‘Census_ProcessorModelIdentifier’,
‘Census_PrimaryDiskTotalCapacity', 'Census PrimaryDiskTypeName®,
‘Census_HasOpticalDiskDrive',
'Census_TotalPhysicalRAM', 'Census_ChassisTypeName',
‘Census_InternalPrimaryDiagonalDisplaySizeInInches’,
'Census_InternalPrimaryDisplayResolutionHorizontal’,
‘Census_InternalPrimaryDisplayResolutionVertical’,
‘Census PowerPlatformRoleMame', 'Census InternalBatteryType',
‘Census_InternalBatteryNumber0fCharges',
‘Census_0SEdition’, 'Census_0SInstalllanguageldentifier’,
‘Census_GenuineStateMame’, "Census_ActivationChannel’,
'Census_FirmwareManufacturerIdentifier’,
‘Census_IsTouchEnabled', "Census_IsPenCapable’,
'Census_ IsAlwaysOnAlwaysConnectedCapable', ‘"Wdft IsGamer’,
‘Wdft RegionIdentifier’]
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Categorical variables of which categories are going to be encoded either in frequency/one-hot
encoding.
Before encoding the categories, we first took a sample of 1500000 rows of the total 8921483

rows using pandas' 'sample(numberOfsample)' method.

sm = 1580860
df train = df train.sample(sm)

Then for the randomly 1500000 selected rows, we applied the encoding techniques.

def encode FE(df,col,verbose=1):
d = df[col].value counts(dropna=False)
n = col+” FE”"
df[n] = df[col].map{d)/d.max()
if verbose==1:
print("FE encoded’,col)
return [n]

Frequency encoding

def encode OHE(df, col, filter, zvalue, tar="HasDetections', m=8.5, wverbose=1):
cv = df[col].value_counts({dropna=False)
cvd = cv.to_dict()
vals = len(cv)
th = filter * len(df)
sd = zvalue * 8.5/ math.sgrt(th)
#print(sd)
n=[]; ct-8;d-={}
for x in cv.index:
try:
if cv[x]<th: break
sd = zvalue * 8.5/ math.sgrt{cv[x])
except:
if cvd[x]<th: break
sd = zvalue * 8.5/ math.sgrt({cvd[x])
if nan_check(x): r = df[df[col].isna()][tar].mean()
else: r = df[df[col]==x][tar].mean()
if abs(r-m)»sd:
nm = col+' BE '+str(x)
if nan_check(x): df[nm] =
else: df[nm] = (df[col]==x
n.append{nm)
dix] =1
ct +=1
if (ct+l1)>=vals: break
if verbose==1:
print( OHE encoded',col, - Created',len(d}, 'booleans’)
return [n,d]

df[col].isna()).astype( 'int8")
.astype( 'int8')

S

One-Hot encoding

20



Build and Train Network

We built a 3 layer fully connected network with 100 neurons on each hidden layer. Using
ReLU activation, Batch Normalization, 40% Dropout, Adam Optimizer, and Decaying Learning
Rate, we tried to increase the accuracy of our neural network. Since we did not have an AUC
loss function, so we used Cross Entropy instead. We called a custom Keras callback after each

epoch to display the current AUC and continually save the best model.

from keras import callbacks
from sklearn.metrics import roc_auc score

class printAUC(callbacks.Callback):
def init (self, X train, y train):
super{printAUC, self). init ()

self.bestAUC = 8
self.X _train = X_train
self.y train = y train

def on_epoch_end{self, epoch, logs={}):
pred = self.model.predict{np.array(self.X train))
auc = roc_auc_ score(self.y train, pred)
print("Train AUC: " + str(auc))
pred = self.model.predict(self.validation_data[e])
auc = roc_auc_score(self.validation data[l], pred)
print ("Validation AUC: " + str(auc))
if (self.bestAUC < auc)
self.bestAUC = auc
self.model.save("besthNet.h5", overwrite=True)
return

21



from sklearn.model selection import train_test split

from keras.models import Sequential

from keras.layers import Dense, Dropout, BatchMormalization, Activation
from keras.callbacks import LearningRateScheduler

from keras.optimizers import Adam

#SPLIT TRAIN AND VALIDATION SET
X _train, X wval, Y _train, ¥ _val = train_test_split(
df_train[cols], df_train['HasDetections'], test_size = 8.5)

# BUILD MODEL

model = Sequential()

model.add(Dense(188, input_dim=len(cols)}))

model . add{Dropout(8.4))

model.add(BatchNormalization())

model . add(Activation( relu’))

model.add(Dense(188))

model . add(Dropout(8.4))

model.add(BatchNormalization())

model . add(Activation{"relu"))

model.add(Dense(l, activation="sigmoid"'})
model.compile(optimizer=Adam(1lr=8.83), loss="binary crossentropy”, metrics=["accuracy”])
annealer = LearningRateScheduler(lambda x: 1le-2 * 8.95 ** x)

# TRAIN MODEL

model.fit(X train,¥_train, batch_size=32, epochs = 3, callbacks=[annealer,
printAUC(X_train, ¥Y_train)], validation_data = (X _wval,¥_val), verbose=2)

We split the training dataset into a training set and a validation set. We needed to have the
validation set because we wanted to find and optimize the best model to solve the challenge. We
divided the 1500000 sample rows equally into two for the training set and the validation set. We
had 750000 rows and columns for each training set and validation set.Then we fitted the data

into the model and began training the model.

22



Train on 7588868 samples, validate on 75888@ samples
Epoch 1/3

- 695 - loss: 8.6441 - accuracy: 8.6216 - val_loss: 8.6347 - val_accuracy: 8.62095

Train AUC: ©.6930805383082830
Validation AUC: ©.5986684238388648
Epoch 2/3

- 665 - loss: 8.6387 - accuracy: 8.6281 - val_less: 8.6281 - val_accuracy: @.6365%

Train AUC: B8.6877973833795817
Validation AUC: ©.594683489682442
Epoch 3/3

- 695 - loss: B8.6363 - accuracy: 8.6383 - val _loss: 8.6236 - val_accuracy: 8.6379

Train AUC: 8.7008044893845151
Validation AUC: ©.69689948008877387

Predict Testing File

Our neural network needed a lot of available RAM even after deleting the training data.

Therefore we needed to load the test.csv file by chunks and predict by chunks. we specify a

chunk size.

del df train
del X train, X val, ¥ train, Y wval
x = pr.collect()

# LOAD BEST SAVED NET
from keras.models import load model
model = load model('bestNet.h5')

pred = np.zeros((7853253,1))

id = 1

chunksize = 1588688

for df test in pd.read csv('test.csv’,

chunksize = chunksize, usecols=list(dtypes.keys())[©8:-1], dtype=dtypes):

print ('Loaded’,len(df test), rows of TEST.CSV!')
# ENCODE TEST
cols = []
for x in FE:
cols += encode FE(df test,x,verbose=8)
for x in range(len({OHE)):
cols += encode OHE test{df test,OHE[x],dd[x])
# PREDICT TEST
end = (id)*chunksize
if end»7853253: end = 7853253

pred[ (id-1)*chunksize:end] = model.predict(df test[cols])

print(' encoded and predicted part',id)
id += 1
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Machine Identifier

encoded and predicted part 1
Result visualization using tableau

Loaded 1588886 rows of TEST.CSWV!
encoded and predicted part 2
Loaded 1588886 rows of TEST.CSWV!
encoded and predicted part 3
Loaded 1588888 rows of TEST.CSWV!
encoded and predicted part 4
Loaded 1588886 rows of TEST.CSWV!
encoded and predicted part 5
Loaded 353253 rows of TEST.CSV!
encoded and predicted part 6
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The test.csv file had a total of 7853253 rows. We needed to divide them and predict the results
Loaded 1588888 rows of TEST.CS5V!

by a chunksize of 1500000 , by the number of rows we trained our model.

Our validation AUC was 0.703.

Results
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Memory Utilization

Loading the test.csv file directly and testing heavily used memory and we needed to load and

predict by chunks. It still needed a lot of available RAM though.

Run Time

The algorithm took around 4336.7 seconds which is around 1 hour and 12 minutes.
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Machine Learning technique 3

Random Forest

g | o= E R Al Trees

Predictions
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Random Forest
Introduction To Random Forest Algorithm Prediicts
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What 1s random forest

Random forests or random decision forests are an ensemble learning method for classification,
regression and other tasks that operate by constructing a multitude of decision trees at training
time and outputting the class that is the mode of the classes (classification) or mean prediction
(regression) of the individual trees. Random decision forests correct for decision trees' habit of
overfitting to their training set.

Here is the process of initializing the classifier with different parameters.

X_train, X_val, Y_train, Y_val = split_train_val_set(X_keep, Y, n=
8.1)

m = RandomForestClassifier(n_estimators=180, min_samples_leaf=25, m

ax_features=6.5, n_jobs=-1, oob_score=False)

%time m.fit(X_train, Y_train)

print_score(m)

After changing the parameters here is the final model that was used.

RandomForestClassifier c calc_field cols_de
corr_condensed display dtypes
forest gc get_val_score i include_cols
m mask
multiprocessing np num_cols pd plot_feature_im
portance plt print_score re reset_rf_sample

S

roc_auc_score row scipy scores set_rf_samples sim_col

s split_train_val_set to_drop to_keep

train_test_split val vals_remove z
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It is obvious that most of the machine learning algorithms require data preprocessing hence,
random forest also needs the data to be prepared in certain ways. We have done the typical

cleaning using correlation. The following graph shows these relations between the data.

UL N N
I P
corr = np.round(scipy.stats.spearmanr(X_keep).correlation, 4)

corr_condensed = hc.distance.squareform(1-corr)

z = hc.linkage(corr_condensed, method='average')

fig = plt.figure(figsize=(16,10))

dendrogram = hc.dendrogram(z, labels=X_keep.columns, orientation='1l
eft', leaf_font_size=16)

plt.show()
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RequireAdmin nan ExistsNotSet Oft Warn Prompt Block oft On E#x02;

m = RandomForestClassifier(n_estimators=64, min_samples_leaf=25, ma
x_features=08.5, n_jobs=-1, oob_score=True)

%time m.fit(X_train, Y_train)

pred = m.predict_proba(X_test)

CPU times: user 6h 16min 38s, sys: 1min 23s, total: 6h 18min 2s

Wall time: 1h 39min 9s

The run time that was taken by this algorithm was 6hrs and 16min 38secs as is shown above.
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Conclusion

e There is always a tradeoff when we choose different machine learning algorithms in
order to carry out our training and testing. It is obvious that there are challenges
associated with machine learning algorithms. The main challenges or the so called
concerns are memory usage, the time it takes to run and the accuracy that the gives.

° The results of this project also witnesses that. This is because when the first algorithm
tries to prioritize memory, the run time has become greater compared to using the later
algorithm which uses Neural networks having smaller runtime compared to the first one.

e  The third algorithm also consumed almost similar time with the first algorithm. In general
we can say that the algorithms that run for a long time were able to perform better.

e  One very big conclusion is that all of the algorithms required a way of preprocessing the
data therefore, it is very important to know what the data is beforehand and preprocess
the data since most of the algorithms would have performed worse if that very crucial

step was omitted.
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Comparison factors

Light GBM

Neural Network

Random Forest

Run Time 24262.4 seconds 4336.7 seconds 6hr 1min 38sec

Accuracy 73.939382% 70.3% 63%

Memory Utilization | Less memory High memory More memory utilization
utilization utilization
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Future Work

e  Now that we have a much better understanding of the commonly used approaches to
solve Microsoft Malware Prediction challenge, we will try to apply other machine
learning algorithms and improve the scores.

e  We will also do hyperparameter tuning to achieve better results

e  Apart from that we would see what difference would be made if the iteration increases in
terms of increasing the accuracy.

e  Takeaways from the project:
- How to handle categories during preprocessing (Frequency/OH Encoding)
- How to wisely and efficiently use training and testing datasets.

- How to apply ML algorithms on problems, such as LBM and NN.
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