

Microsoft Malware Prediction

CSE 351 Final Project

By Rediet and Merry

Submitted to:
 Professor Pravin Pawar

Spring 2020, SUNYK CSE 351

1

Content
Introduction………………………………………………………………………………....3

Objective…………………………………………………………………………………….4

Light GBM​…………………………………………………………………………………..5

Data preprocessing…………………………………………………………………………..7

Memory utilization…………………………………………………………………………..11

Model Selection……………………………………………………………………………..13

Parameter tuning, Accuracy prediction……………………………………………………..15

Neural Network……………………………………………………………………………..17

Random Forest……………………………………………………………………………...26

Data Visualization…………………………………………………………………………..30

Conclusion………………………………………………………………………………….33

Future Work………………………………………………………………………………...34

References………………………………………………………………………………... ..35

2

Introduction
Malicious software is abundant in a world of innumerable computer users, who are constantly faced with

these threats from various sources like the internet, local networks and portable drives. Malware is

potentially low to high risk and can cause systems to function incorrectly, steal data and even crash.

Malware may be executable or system library files in the form of viruses, worms, Trojans, all aimed at

breaching the security of the system and compromising user privacy. Typically, anti-virus software is

based on a signature definition system which keeps updating from the internet and thus keeping track of

known viruses. While this may be sufficient for home-users, a security risk from a new virus could

threaten an entire enterprise network.

The primary goal of this competition is to predict a Windows machine’s probability of getting infected by

various families of malware, based on different properties of that machine. ​Hence, the data required for

malware prediction can be any information about the state of a computer which is hit by a malware attack.

As there are various types of malware attacks, machines may behave differently when attacked.

Therefore, it is useful to collect a large amount of data about computers that are attacked. Most of the data

comes from the system behavior of the machine and the type of the machine. For our case Microsoft has

done all the process of capturing the information from a windows defender through a long course of time.

Therefore, we have chosen to use the Kaggle dataset on Microsoft Malware Detection. As the kaggle

dataset is highly organized and has all the required (sampleSubmission, training, and testing) data, it is

suitable to study and preprocess easily. In addition to that, many Kaggle competitors used the dataset in

the past, and under the discussion section many useful tips about preprocessing the dataset are given.

Therefore, we decided to use Kaggle as our primary source of data.

3

Project Objectives

The objective of this project is to analyze the different solutions that the competitors of kaggle

community brought and compare their solutions in order to provide the pros and cons of different

methods and approaches that were used to tackle this problem and possibly come up with a

conclusion on which solution is more effective for predicting the malwares effectively into their

respective families. In doing so we hope to be part of the group that is trying to solve the

challenge that microsoft is proposing. To explain the objective in great detail, the goal of this

competition was to predict a Windows machine’s probability of getting infected by various

families of malware, based on different properties of that machine. This can be accomplished by

the training data that microsoft made available which contains these properties which are the

machine’s infections that were generated by Windows Defender which combines heartbeat and

threat reports collected by Microsoft's endpoint protection solution,

Here are specific objectives:

1, Analyze the codes that were submitted on the competition and understand how different

people approached the problem inorder to investigate the accuracy of the model presented and its

viability to different sorts of malware detection.

2, Observe the execution information whereby we speculate the amount of time the execution of

the code took together with the memory usage, the readability and simplicity of the code and its

quality as well. To do so we will be using the execution information presented by kaggle

competitors.

3, Examine the significant parameters that affect the model and figure out which ones give better

results. This includes scrutinizing the optimizations used and the hyperparameter tuning that

were considered.

4

Machine learning techniques used

Machine Learning technique 1

Light GBM

5

What is Light GBM

● It is a gradient boosting framework that uses tree based learning algorithms.

● It is designed to be distributed and efficient with the following advantages:

● Support of parallel and GPU learning.

● Capable of handling large-scale data.

 ​Advantages of Light GBM

1. Faster training speed and higher efficiency​: Light GBM use histogram based algorithm

i.e it buckets continuous feature values into discrete bins which fasten the training

procedure.

2. Lower memory usage:​ Replaces continuous values to discrete bins which result in lower

memory usage.

3. Better accuracy than any other boosting algorithm:​ It produces much more complex

trees by following leaf wise split approach rather than a level-wise approach which is the

main factor in achieving higher accuracy. However, it can sometimes lead to overfitting

which can be avoided by setting the max_depth parameter.

4. Compatibility with Large Datasets:​ It is capable of performing equally good with large

datasets with a significant reduction in training time as compared to XGBOOST.

5. Parallel learning supported.

6

Data preprocessing
The raw data is very high dimensional and has many missing values. The size of data is also

comparatively large.Each row in this dataset corresponds to a machine, uniquely identified by a

MachineIdentifier. HasDetections is the ground truth and indicates that Malware was detected on the

machine. Using the information and labels in train.csv, we predict the value for HasDetections for each

machine in test.csv. A detailed description of the nature of the data will be provided in the next section.

As we all know the big challenge that is related to most machine learning training and testing processes is

data. Firstly getting the right data. Second, preparing the data so that it can properly fit the algorithm or

whatever predicting and testing architecture that we use. Hence in our project here as well, we have tried

preprocessing the data. It was especially so important as the data was too big to even be opened. Hence

reducing the size of the data and removing less necessary or unnecessary columns was very crucial. Here

we have provided the data cleaning and preprocessing steps with description.

Removing unnecessary columns:

As the data is highly dimensional in this specific kaggle challenge, it is really difficult to do anything with

it. So we can reduce the column dimension by eliminating less useful columns which have.

1, Mostly-missing Feature- ​in the given data set there are around 2 columns that have more than

99% of missing values. Hence removing them wouldn’t affect the dataset at all since most of the values in

under the column are missing

2, Too-skewed features ​- these are the columns whose majority categories cover more than 99%

of occurrences. Hence there is no need to keep them. Normally highly skewed data give us too little

information. When 1% of data with other values have the same distribution of target features.

3, Highly-correlated features- ​correlations between columns show how related the two columns

are. Hence, after testing correlations between columns, we picked up pairs whose correlation is greater

than 0.99 compared to the distribution of the features in the pairs and also correlation with high

detections. Then the minor columns can be eliminated.

Throughout this process, it is possible to eliminate 17 columns without losing significant information.

7

One Hot Encoding
One hot encoding is a process by which categorical variables are converted into a form that could

be provided to ML algorithms to do a better job in prediction.

Why is just label encoding not sufficient to provide to the model for training? Why do we need

one hot encoding?

Problem with label encoding is that it assumes higher the categorical value, better the category.

In addition to that inorder to perform “binarization” of the category and include it as a feature to

train the model, one hot encoding was much better. The images below show how we encode

using hot encoding through vectors before we pass the category when we had to use a machine

learning algorithm.

8

Transforming features and Encoding
The code below shows how the row data was transformed using label encoder and one hot

encoder. And then values more than 1000 observations were taken as a sample.

After that the biggest challenge was having unbalanced testing and training values hence we

dropped the ones that were unbalanced. That is how we dealt with this challenge as our mentor

was mentioning that as a good solution for this kind of case.

9

After fitting the one hot encoder we were dealing with memory usage which we will discuss

briefly in the next page.

10

Memory utilization

Vstack Vs simple approach

X_fit = vstack([train[train_index[i*m:(i+1)*m]] for i in range(train_index.shape[0] // m + 1)])

Vs

X_fit = train[train_index]

Using vstack helps to fit the kernel inside the memory

11

Criterias used for Unbalanced Values

The criteria that was used to deal with unbalanced values between train and test was by

analyzing the number of observations between the two. This was important because such groups

may have different density functions and it can have a negative impact on the model. Some

values are temporary and have a limited life cycle.

In production it might be necessary to know what categories are temporary to exclude them from

the model or predict the behavior of the categories by the time series row, The main reason was

to reduce memory usage. Also small groups have little impact on the final score.

12

Model Selection

LGBMClassifier uses a scikit-learn style api. That was the reason why we used the classifier

right away as our model. But if we use original lgbm, we might need to create LGB.datasets first

and then pass it which is a lot of work.

The parameters are initialized as it is shown in the snap above. It is especially known that

learning rate affects accuracy and we found that 0.05 performs better. It is a hyper parameter

which can be improved later on.

13

Parameter tuning

colsample_bytree​ - allows to use all the 82 variables without removing the bad ones. Using

small values for this gives better results. This is because now the bad ones get randomly

"removed" as new trees are added. (Trees that use bad ones get low weighting.). However, this

might change with some optimization.

There were also other hyper parameters that were affecting the algorithm which are like the

learning rate, the number of leaves, the depth and the like. Most of them we initialized them all

as follows:

 max_depth​=-1​,

 n_estimators​=30000​,

 learning_rate​=0.05​,

 num_leaves​=2**12-1​,

 colsample_bytree​=0.28​,

 objective​=​'binary'​,

 n_jobs​=-1​)

14

Accuracy

As we can see from the result on the right side the accuracy has not improved after the second

fold. And the binary_logloss also started increasing. However after the 300th iteration of the 3rd

fold, the accuracy again started to increase resulting in 73.93%. Here is the detailed information

on which fold gabe the best accuracy. The best accuracy for the first fold is ​73.8998% ​at

iteration ​402. ​The best accuracy for the second fold is​ 73.9095%​ at iteration​ 390. ​The best

accuracy for the third fold is​ 73.939382%​ at iteration​ 417.

15

Prediction

Prediction is divided by 5 since ​it's a 6 fold CV. This is more of like a 6 Models kind of average

The above code shows how we loaded the test data that we already preprocessed and saved and

how we used the model “lgb_model” to predict the test data.

Run time
The algorithm took around​ ​24262.4​ ​seconds ​which is around 6 hours for 6 folds each with ​100

rounds each round being ​100 ​iterations.

16

Machine Learning technique 2

Neural Network

17

Data Preprocessing

​We first studied three categorical features encoding techniques which are Drop categorical

variables, Frequency encoding, and One-Hot encoding.

​Drop Categorical variables​: This is the easiest technique of all.The mechanism is to remove

categorical variables which do not contain any useful information. We used this technique to

preprocess our dataset on milestone 2, however, it turns out that our data has many categorical

variables of which categories' frequency is very important to study. Therefore, we decided not to

use this technique.

Frequency encoding:​This technique uses the frequency of each category as labels.It helps the

model to understand and assign the weight to categories according to the nature of the data.

Many of the categorical variables in our dataset had frequently appearing categories and we

believed it would be important to study about these categories so we decided to apply Frequency

encoding technique.

18

 Snipped image from Kaggle that shows the most common categories from categorical variables.

​One-Hot encoding: This technique represents categories in the form of vectors. By creating

columns, One-Hot-encoding makes it easy to indicate the presence/absence of each category.

This technique also works well if there's no ordering in the categorical data. As our dataset had

many categories missing and no clear ordering, using One-Hot-encoding to preprocess our data

was the best choice to feed into the Neural Network model.

After carefully studying the aforementioned encoding techniques, we decided to identify which

categories should be encoded with which encoding technique. We identified the encoding

techniques for the categories according to the nature of the categories we studied on kaggle. For

the categorical variables which have frequently appearing categories, we decided to encode them

using frequency encoding; for categorical variables which have many missing categories and not

many categories, we decided to encode them using one-hot encoding technique.

19

Categorical variables of which categories are going to be encoded either in frequency/one-hot

encoding.

Before encoding the categories, we first took a sample of 1500000 rows of the total 8921483

rows using pandas' 'sample(numberOfsample)' method.

Then for the randomly 1500000 selected rows, we applied the encoding techniques.

Frequency encoding

One-Hot encoding

20

Build and Train Network

We built a 3 layer fully connected network with 100 neurons on each hidden layer. Using

ReLU activation, Batch Normalization, 40% Dropout, Adam Optimizer, and Decaying Learning

Rate, we tried to increase the accuracy of our neural network. Since we did not have an AUC

loss function, so we used Cross Entropy instead. We called a custom Keras callback after each

epoch to display the current AUC and continually save the best model.

21

We split the training dataset into a training set and a validation set. We needed to have the

validation set because we wanted to find and optimize the best model to solve the challenge. We

divided the 1500000 sample rows equally into two for the training set and the validation set. We

had 750000 rows and columns for each training set and validation set.Then we fitted the data

into the model and began training the model.

22

Predict Testing File

Our neural network needed a lot of available RAM even after deleting the training data.

Therefore we needed to load the test.csv file by chunks and predict by chunks. we specify a

chunk size.

23

The test.csv file had a total of 7853253 rows. We needed to divide them and predict the results

by a chunksize of 1500000 , by the number of rows we trained our model.

Results
Our validation AUC was 0.703.

 ​ Result visualization using tableau

24

Memory Utilization
Loading the test.csv file directly and testing heavily used memory and we needed to load and

predict by chunks. It still needed a lot of available RAM though.

Run Time

The algorithm took around​ ​4336.7​ ​seconds ​which is around 1 hour and 12 minutes.

25

Machine Learning technique 3

Random Forest

26

What is random forest
Random forests or random decision forests are an ensemble learning method for classification,

regression and other tasks that operate by constructing a multitude of decision trees at training

time and outputting the class that is the mode of the classes (classification) or mean prediction

(regression) of the individual trees. Random decision forests correct for decision trees' habit of

overfitting to their training set.

Here is the process of initializing the classifier with different parameters.

After changing the parameters here is the final model that was used.

27

It is obvious that most of the machine learning algorithms require data preprocessing hence,

random forest also needs the data to be prepared in certain ways. We have done the typical

cleaning using correlation. The following graph shows these relations between the data.

28

The run time that was taken by this algorithm was 6hrs and 16min 38secs as is shown above.

29

Data Visualization

30

31

Conclusion

● There is always a tradeoff when we choose different machine learning algorithms in

order to carry out our training and testing. It is obvious that there are challenges

associated with machine learning algorithms. The main challenges or the so called

concerns are memory usage, the time it takes to run and the accuracy that the gives.

● The results of this project also witnesses that. This is because when the first algorithm

tries to prioritize memory, the run time has become greater compared to using the later

algorithm which uses Neural networks having smaller runtime compared to the first one.

● The third algorithm also consumed almost similar time with the first algorithm. In general

we can say that the algorithms that run for a long time were able to perform better.

● One very big conclusion is that all of the algorithms required a way of preprocessing the

data therefore, it is very important to know what the data is beforehand and preprocess

the data since most of the algorithms would have performed worse if that very crucial

step was omitted.

32

Comparison factors Light GBM Neural Network Random Forest

Run Time ​24262.4 seconds 4336.7 seconds 6hr 1min 38sec

Accuracy 73.939382% 70.3% 63%

Memory Utilization Less memory
utilization

High memory
utilization

More memory utilization

33

Future Work

● Now that we have a much better understanding of the commonly used approaches to

solve Microsoft Malware Prediction challenge, we will try to apply other machine

learning algorithms and improve the scores.

● We will also do hyperparameter tuning to achieve better results

● Apart from that we would see what difference would be made if the iteration increases in

terms of increasing the accuracy.

● Takeaways from the project:

 - How to handle categories during preprocessing (Frequency/OH Encoding)

 - How to wisely and efficiently use training and testing datasets.

 - How to apply ML algorithms on problems, such as LBM and NN.

34

References

https://www.kaggle.com/jiegeng94/everyone-do-this-at-the-beginning/data?select=sample_submission.cs

v

 ​https://www.kaggle.com/timon88/load-whole-data-without-any-dtypes

https://www.kaggle.com/c/microsoft-malware-prediction/data?select=test.csv

https://www.kaggle.com/harmeggels/random-forest-feature-importances?select=submissionv2.csv

35

https://www.kaggle.com/jiegeng94/everyone-do-this-at-the-beginning/data?select=sample_submission.csv
https://www.kaggle.com/jiegeng94/everyone-do-this-at-the-beginning/data?select=sample_submission.csv
https://www.kaggle.com/timon88/load-whole-data-without-any-dtypes
https://www.kaggle.com/c/microsoft-malware-prediction/data?select=test.csv
https://www.kaggle.com/harmeggels/random-forest-feature-importances?select=submissionv2.csv

36

37

38

39

40

41

42

43

44

45

46

