
1

Zombiquarium
TM

Software Design Description

Author: Richard McKenna

Debugging Enterprises
TM

November, 2011

Version 1.0

Abstract: This document describes the software design for Zombiquarium, a casual mini-game in

development as part of Plants vs. Zombies.

Based on IEEE Std 1016
TM

-2009 document format

Copyright © 2011 Debugging Enterprises, which is a made up company and doesn’t really own Zombiquarium,

PopCap Games does. Please note that this document is fictitious in that it simply serves as an example for CSE

219 students at Stony Brook University to use in developing their own SDD.

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise,

without the prior written permission of the publisher.

2

1 Introduction

This is the Software Design Description (SDD) for the Zombiquarium
TM

 mini-game application. Note that this

document format is based on the IEEE Standard 1016-2009 recommendation for software design.

1.1 Purpose

This document is to serve as the blueprint for the construction of the Zombiquarium application. This design

will use UML class diagrams to provide complete detail regarding all packages, classes, instance variables,

class variables, and method signatures needed to build the application. In addition, UML Sequence diagrams

will be used to specify object interactions post-initialization of the application, meaning in response to user

interactions or timed events.

1.2 Scope

Zombiquarium will be one mini-game among many to be included in the Plants vs. Zombies application. Tools

for its construction should be developed with this in mind such that additional mini-games may avoid

duplication of work. As such, a framework called the MiniGame Framework, will be designed and constructed

along with the Zombiquarium game such that it may be used to build additional mini-games. So, this design

contains design descriptions for the development of both the framework and game. Note that Java is the target

language for this software design.

1.3 Definitions, acronyms, and abbreviations

Class Diagram – A UML document format that describes classes graphically. Specifically, it describes their

instance variables, method headers, and relationships to other classes.

IEEE – Institute of Electrical and Electronics Engineers, the “world’s largest professional association for the

advancement of technology”.

Framework – In an object-oriented language, a collection of classes and interfaces that collectively provide a

service for building applications or additional frameworks all with a common need.

Java – A high-level programming language that uses a virtual machine layer between the Java application and

the hardware to provide program portability.

Mini-Game – A standalone game that is a subset of a larger game application, typically sharing the primary

game theme with that parent game application.

Mini Game Framework – The software framework to be developed in tandem with the Zombiquarium game

such that additional mini-games can easily be constructed. Note that in the Zombiquarium SRS this was

sometimes called the “Mini Zombie Game Framework”, but has been renamed the “Mini Game Framework”,

since it’s not Zombie-specific.

3

Plants vs. Zombies – The PopCap Games game that is the parent application of our Zombiquarium mini-game.

Note that Zombiquarium is to be distributed as part of that program.

Sequence Diagram – A UML document format that specifies how object methods interact with one another.

Sprite – a renderable, and sometimes movable or clickable image in the game. Each Sun, Zombie, and Brain

will be its own Sprite, as will GUI controls.

SpriteType – a type of Sprite, meaning all the artwork and states corresponding to a category of sprite. We do

this because all the suns share artwork, so we will load all their artwork into a common Sprite Type, but each

Sprite has its own position and velocity, so each will be its own Sprite that knows what Sprite Type it belongs

to.

UML – Unified Modeling Language, a standard set of document formats for designing software graphically.

Zombie – An undead creature, meaning something that has died and then come back to life. These beings are

typically slow moving and love to eat brains.

Zombiquarium – The title of the mini-game described by this document. Again, note that this game will be

distributed as part of the Plants vs. Zombies application.

1.4 References

IEEE Std 830
TM

-1998 (R2009) – IEEE Standard for Information Technology – Systems Design – Software

Design Descriptions

Zombiquarium
TM

 SRS – Debugging Enterprises’ Software Requirements Specification for the Zombiquarium

mini-game application.

1.5 Overview

This Software Design Description document provides a working design for the Zombiquarium software

application as described in the Zombiquarium Software Requirements Specification. Note that all parties in the

implementation stage must agree upon all connections between components before proceeding with the

implementation stage. Section 2 of this document will provide the Package-Level Viewpoint, specifying the

packages and frameworks to be designed. Section 3 will provide the Class-Level Viewpoint, using UML Class

Diagrams to specify how the classes should be constructed. Section 4 will provide the Method-Level System

Viewpoint, describing how methods will interact with one another. Section 5 provides deployment information

like file structures and formats to use. Section 6 provides a Table of Contents, an Index, and References. Note

that all UML Diagrams in this document were created using the VioletUML editor.

4

2 Package-Level Design Viewpoint

As mentioned, this design will encompass both the Zombiquarium game application and the Mini-Game

Framework to be used in its construction. In building both we will heavily rely on the Java API to provide

services. Following are descriptions of the components to be built, as well as how the Java API will be used to

build them.

2.1 Zombiquarium and Mini Game overview

The Zombiquarium and MiniGame framework will be designed and developed in tandem. Figure 2.1 specifies

all the components to be developed and places all classes in home packages.

Figure 2.1: Design Packages Overview

Mini Game Framework

Zombiquarium Mini-Game

5

2.2 Java API Usage

Both the framework and the mini-game application will be developed using the Java programming languages.

As such, this design will make use of the classes specified in Figure 2.2.

Figure 2.2: Java API Classes and Packages To Be Used

2.3 Java API Usage Descriptions

Tables 2.1-2.7 below summarize how each of these classes will be used.

Class/Interface Use

Color For setting the rendering colors for text and the progress bar

Font For setting the fonts for rendered text

Graphics For rendering text, images, and shapes to the canvas

Image For storing image data

Insets For changing component margins

MediaTracker For ensuring synchronous image loading

Toolkit For loading images

Table 2.1: Uses for classes in the Java API’s java.awt package

6

Class/Interface Use

ActionEvent For getting information about an action event like which button

was pressed.

ActionListener For responding to an action event, like a button press. We will

provide our own custom implementation of this interface.

KeyEvent For getting information about a key event, like which key was

pressed.

KeyListener For responding to a key event, like a key press. We will provide

our own custom implementation of this interface.

MouseEvent For getting information about a mouse event, like where was the

mouse pressed?

MouseListener For responding to a mouse event, like a mouse button press. We

will provide our own custom implementation of this interface.

Table 2.2: Uses for classes in the Java API’s java.awt.event package

Class/Interface Use

BufferedImage For storing image data where pixel information can be accessed

and changed.

WritableRaster For changing pixel data in a BufferedImage. We’ll use this to add

transparency to pixels loaded with the color key.

Table 2.3: Uses for classes in the Java API’s java.awt.image package

Class/Interface Use

BufferedReader For reading text files, we’ll use this for loading some game data at

startup.

FileReader For reading files.

Table 2.4: Uses for classes in the Java API’s java.io package

7

Class/Interface Use

Collection For storing groups of data, Values in a Map, i.e. TreeMap or

HashMap are stored in Collections. We’ll need to iterate through

Collections for rendering.

HashMap For storing (name,value) key pairs, we’ll use it for storing our

Images, accessible using their ID names.

Iterator For iterating through a data structure during operations like

rendering.

Timer Will execute our custom task at fixed intervals.

TimerTask Our custom task to be executed at a fixed framerate. We will

extend this class and provide the task implementation in the run

method.

TreeMap For storing (name,value) key pairs, we’ll use it for storing

SpriteTypes and GUI components, accessible using their ID

names.

Vector For storing data like the Strings for rendering debugging text.

Table 2.5: Uses for classes in the Java API’s java.io package

Class/Interface Use

ReentrantLock For ensuring only one thread has access to program data.

Table 2.6: Uses for classes in the Java API’s java.util.concurrent package

Class/Interface Use

JFrame Provides the window for our GUI.

JOptionPane Provides a popup dialog for error feedback.

JPanel Provides a canvas for the game to be rendered onto.

Table 2.7: Uses for classes in the Java API’s javax.swing package

8

3 Class-Level Design Viewpoint

As mentioned, this design will encompass both the Zombiquarium game application and the Mini-Game

Framework. The following UML Class Diagrams reflect this. Note that due to the complexity of the project, we

present the class designs using a series of diagrams going from overview diagrams down to detailed ones.

Figure 3.1: Mini-Game Framework Overview UML Class Diagram

Figure 3.2: Zombiquarium Overview UML Class Diagram

9

Figure 3.3: Detailed MiniGame and MiniGameTimerTask UML Class Diagram

10

Figure 3.4: Detailed MiniDataModel UML Class Diagram

11

Figure 3.5: Detailed Sprite, Sprite, and MiniGameEventRelayer UML Class Diagram

12

Figure 3.6: Detailed Zombiquarium and ZombiquariumPanel UML Class Diagram

13

Figure 3.7: Detailed ZombiquariumModel and Zombie UML Class Diagrams

Figure 3.8: Detailed BuyTrophyHandler, BuyZombieHandler, and NewGameHandler UML Class

Diagrams

14

4 Method-Level Design Viewpoint

Now that the general architecture of the classes has been determined, it is time to specify how data will flow

through the system. The following UML Sequence Diagrams describe the methods called within the code to be

developed in order to provide the appropriate event responses.

Figure 4.1: BuyTrophyHandler UML Sequence Diagrams

Figure 4.2: BuyZombieHandler UML Sequence Diagrams

15

Figure 4.3: NewGameHandler UML Sequence Diagrams

Figure 4.4: Mouse Click on Canvas UML Sequence Diagrams

16

Figure 4.5: Key Press UML Sequence Diagrams

17

5. File Structure and Formats

Note that the Mini Game Framework will be provided inside MiniGameFramework.jar, a Java ARchive file that

will encapsulate the entire framework. This should be imported into the necessary project for the Zombiquarium

application and will be included in the deployment of a single, executable JAR file titled Zombiquarium.jar.

Note that all necessary data and art files must accompany this program. Figure 5.1 specifies the necessary file

structure the launched application should use. Note that all necessary images should of course go in the image

directory.

Figure 5.1: Zombiquarium File Structure

The ZombiquariumGameData.txt provides the file and state names for all sprite states in the game. The file is a

raw text file that can be used to describe M Sprite Types, each with their own N states as follows:

NumSpriteTypes

SpriteType_1|NumStatesFor_1

SpriteType_1STATE_1|SpriteType_1STATE_1_FileNameAndPath

…

SpriteType_1STATE_N1|SpriteType_1STATE_N1_FileNameAndPath

…

SpriteType_M|NumStatesFor_M

SpriteType_MSTATE_1|SpriteType_MSTATE_1_FileNameAndPath

…

SpriteType_MSTATE_N2|SpriteType_MSTATE_N2_FileNameAndPath

We can describe these values as follows:

NumSpriteTypes – an integer that lists the total number of Sprite Types to be loaded. Note that this value must

correspond to the number of Sprite Types that will be described by the file using the proper format.

SpriteType_X – the textual name of a type of sprite, which should correspond to a Zombiquarium named

constant.

NumStatesFor_X – an integer that lists the total number of states for Sprite Type #X. Note that this value must

correspond to the number of states for that Sprite Type that will be described by the file using the proper format.

SpriteTye_X_Y – the textual name of a state for sprite X. Note that this value must correspond to a

Zombiquarium named constant.

SpriteType_XSTATE_Y_FileNameAndPath – the textual relative path (from the game’s home directory) and

file name for the image to be used to represent sprite type X when it is in state Y.

18

6. Supporting Information

Note that this document should serve as a reference for those implementing the code, so we’ll provide a table of

contents to help quickly find important sections.

6.1 Table of contents

1. Introduction 2

1. Purpose 2

2. Scope 2

3. Definitions, acronyms, and abbreviations 2

4. References 3

5. Overview 3

2. Package-Level Design Viewpoint 4

1. Zombiquarium and Mini Game overview 4

 2. Java API Usage 5

 3. Java API Usage Descriptions 5

3. Class-Level Design Viewpoint 8

4. Method-Level Design Viewpoint 14

5. File Structure and Formats 17

6. Supporting Information 18

1. Table of contents 18

2. Appendixes 18

6.2 Appendixes

N/A

