
Chapter 1- Introduction
Lecture 1

© Pravin Pawar – SUNY Korea and Pearson

Topics covered

• Professional software development
• What is meant by software engineering.

• Software engineering ethics
• A brief introduction to ethical issues that affect software engineering.

Chapter 1 Introduction 2

Software engineering

• The term Software Engineering was proposed in 1968 at a
conference organized by NATO to discuss software crisis .

• The economies of ALL developed nations are
dependent on software.

• More and more systems are software controlled
• Software engineering is concerned with theories, methods and tools

for professional software development.
• Expenditure on software represents a

significant fraction of GNP in all developed countries.

Software costs

• Software costs often dominate computer system costs. The costs of
software on a PC are often greater than the hardware cost.

• Software costs more to maintain than it does to develop. For systems
with a long life, maintenance costs may be several times
development costs.

• Software engineering is concerned with cost-effective software
development.

Software products

• Generic products
• Stand-alone systems that are marketed and sold to any customer who wishes

to buy them.
• Examples – PC software such as graphics programs, project management

tools; CAD software; software for specific markets such as appointments
systems for dentists.

• Customized products
• Software that is commissioned by a specific customer to meet their own

needs.
• Examples – embedded control systems, air traffic control software, traffic

monitoring systems.

Chapter 1 Introduction 5

Frequently asked questions about software
engineering

Chapter 1 Introduction 6

Question Answer

What is software? Computer programs and associated documentation.
Software products may be developed for a particular
customer or may be developed for a general market.

What are the attributes of good software? Good software should deliver the required functionality
and performance to the user and should be
maintainable, dependable and usable.

What is software engineering? Software engineering is an engineering discipline that is
concerned with all aspects of software production.

What are the fundamental software
engineering activities?

Software specification, software development, software
validation and software evolution.

What is the difference between software
engineering and computer science?

Computer science focuses on theory and fundamentals;
software engineering is concerned with the practicalities
of developing and delivering useful software.

What is the difference between software
engineering and system engineering?

System engineering is concerned with all aspects of
computer-based systems development including
hardware, software and process engineering. Software
engineering is part of this more general process.

Frequently asked questions about software
engineering

Question Answer

What are the key challenges facing
software engineering?

Coping with increasing diversity, demands for reduced
delivery times and developing trustworthy software.

What are the costs of software
engineering?

Roughly 60% of software costs are development costs,
40% are testing costs. For custom software, evolution
costs often exceed development costs.

What are the best software engineering
techniques and methods?

While all software projects have to be professionally
managed and developed, different techniques are
appropriate for different types of system. For example,
games should always be developed using a series of
prototypes whereas safety critical control systems require
a complete and analyzable specification to be developed.
You can’t, therefore, say that one method is better than
another.

What differences has the web made to
software engineering?

The web has led to the availability of software services
and the possibility of developing highly distributed service-
based systems. Web-based systems development has led
to important advances in programming languages and
software reuse.

Chapter 1 Introduction 7

Essential attributes of good software

Chapter 1 Introduction 8

Product characteristic Description

Maintainability Software should be written in such a way so that it can evolve to
meet the changing needs of customers. This is a critical attribute
because software change is an inevitable requirement of a
changing business environment.

Dependability and
security

Software dependability includes a range of characteristics
including reliability, security and safety. Dependable software
should not cause physical or economic damage in the event of
system failure. Malicious users should not be able to access or
damage the system.

Efficiency Software should not make wasteful use of system resources such
as memory and processor cycles. Efficiency therefore includes
responsiveness, processing time, memory utilisation, etc.

Acceptability Software must be acceptable to the type of users for which it is
designed. This means that it must be understandable, usable and
compatible with other systems that they use.

Software process activities

• Software specification, where customers and engineers define the
software that is to be produced and the constraints on its operation.

• Software development, where the software is designed and
programmed.

• Software validation, where the software is checked to ensure that it
is what the customer requires.

• Software evolution, where the software is modified to reflect
changing customer and market requirements.

Chapter 1 Introduction 9

General issues that affect most software

• Heterogeneity
• Increasingly, systems are required to operate as distributed systems across

networks that include different types of computer and mobile devices.

• Business and social change
• Business and society are changing incredibly quickly as emerging economies

develop and new technologies become available. They need to be able to
change their existing software and to rapidly develop new software.

• Security and trust
• As software is intertwined with all aspects of our lives, it is essential that we

can trust that software.

Chapter 1 Introduction 10

Application types

• Stand-alone applications
• These are application systems that run on a local computer, such as a PC.

They include all necessary functionality and do not need to be connected to
a network.

• Interactive transaction-based applications
• Applications that execute on a remote computer and are accessed by users

from their own PCs or terminals. These include web applications such as e-
commerce applications.

• Embedded control systems
• These are software control systems that control and manage hardware

devices. Numerically, there are probably more embedded systems than any
other type of system.

Chapter 1 Introduction 11

Application types

• Batch processing systems
• These are business systems that are designed to process data in large

batches. They process large numbers of individual inputs to create
corresponding outputs.

• Entertainment systems
• These are systems that are primarily for personal use and which are intended

to entertain the user.

• Systems for modeling and simulation
• These are systems that are developed by scientists and engineers to model

physical processes or situations, which include many, separate, interacting
objects.

Chapter 1 Introduction 12

Application types

• Data collection systems
• These are systems that collect data from their environment using a set of

sensors and send that data to other systems for processing.

• Systems of systems
• These are systems that are composed of a number of other software

systems.

Chapter 1 Introduction 13

Software engineering and the web

• The Web is now a platform for running application and organizations
are increasingly developing web-based systems rather than local
systems.

• Web services allow application functionality to be accessed over the
web.

• Cloud computing is an approach to the provision of computer
services where applications run remotely on the ‘cloud’.

• Users do not buy software buy pay according to use.

Chapter 1 Introduction 14

Web-based software engineering

• Web-based systems are complex distributed systems but the
fundamental principles of software engineering discussed previously
are as applicable to them as they are to any other types of system.

• The fundamental ideas of software engineering, discussed in the
previous section, apply to web-based software in the same way that
they apply to other types of software system.

Chapter 1 Introduction 15

Web software engineering

• Software reuse is the dominant approach for constructing web-based
systems.

• When building these systems, you think about how you can assemble them from pre-
existing software components and systems.

• Web-based systems should be developed and delivered incrementally.
• It is now generally recognized that it is impractical to specify all the requirements for

such systems in advance.

• User interfaces are constrained by the capabilities of web browsers.
• Technologies such as AJAX allow rich interfaces to be created within a web browser

but are still difficult to use. Web forms with local scripting are more commonly used.

Chapter 1 Introduction 16

Software engineering ethics

• Software engineering involves wider responsibilities than simply the
application of technical skills.

• Software engineers must behave in an honest and ethically
responsible way if they are to be respected as professionals.

• Ethical behaviour is more than simply upholding the law but involves
following a set of principles that are morally correct.

Issues of professional responsibility

• Confidentiality
• Engineers should normally respect the confidentiality of their employers or

clients irrespective of whether or not a formal confidentiality agreement has
been signed.

• Competence
• Engineers should not misrepresent their level of competence. They should

not knowingly accept work which is outwith their competence.

• Intellectual property rights
• Engineers should be aware of local laws governing the use of intellectual property

such as patents, copyright, etc. They should be careful to ensure that the
intellectual property of employers and clients is protected.

• Computer misuse
• Software engineers should not use their technical skills to misuse other people’s

computers. Computer misuse ranges from relatively trivial (game playing on an
employer’s machine, say) to extremely serious (dissemination of viruses).

The ACM/IEEE Code of Ethics

Chapter 1 Introduction 19

Software Engineering Code of Ethics and Professional Practice

ACM/IEEE-CS Joint Task Force on Software Engineering Ethics and Professional Practices

PREAMBLE
The short version of the code summarizes aspirations at a high level of the abstraction; the clauses
that are included in the full version give examples and details of how these aspirations change the
way we act as software engineering professionals. Without the aspirations, the details can become
legalistic and tedious; without the details, the aspirations can become high sounding but empty;
together, the aspirations and the details form a cohesive code.

Software engineers shall commit themselves to making the analysis, specification, design,
development, testing and maintenance of software a beneficial and respected profession. In
accordance with their commitment to the health, safety and welfare of the public, software
engineers shall adhere to the following Eight Principles:

Ethical principles

Chapter 1 Introduction 20

1. PUBLIC - Software engineers shall act consistently with the public interest.

2. CLIENT AND EMPLOYER - Software engineers shall act in a manner that is in the best interests of
their client and employer consistent with the public interest.

3. PRODUCT - Software engineers shall ensure that their products and related modifications meet
the highest professional standards possible.

4. JUDGMENT - Software engineers shall maintain integrity and independence in their professional
judgment.

5. MANAGEMENT - Software engineering managers and leaders shall subscribe to and promote an
ethical approach to the management of software development and maintenance.

6. PROFESSION - Software engineers shall advance the integrity and reputation of the profession
consistent with the public interest.

7. COLLEAGUES - Software engineers shall be fair to and supportive of their colleagues.

8. SELF - Software engineers shall participate in lifelong learning regarding the practice of their
profession and shall promote an ethical approach to the practice of the profession.

Ethical dilemmas

• Disagreement in principle with the policies of senior management.
• Your employer acts in an unethical way and releases a safety-critical

system without finishing the testing of the system.
• Participation in the development of military weapons systems or

nuclear systems.

