
Chapter 2 – Software Processes

© Pearson Education, Pravin Pawar – SUNY Korea 130/10/2014



Topics covered

 Software process models

 Process activities

 Coping with change

Chapter 2 Software Processes 230/10/2014



The software process

 A structured set of activities required to develop a 
software system. 

Many different software processes but all involve:

 Specification – defining what the system should do;

 Design and implementation – defining the organization of the 
system and implementing the system;

 Validation – checking that it does what the customer wants;

 Evolution – changing the system in response to changing 
customer needs.

 A software process model is an abstract representation 
of a process.

Chapter 2 Software Processes 330/10/2014



30/10/2014 Chapter 2 Software Processes 4



Software process models

Chapter 2 Software Processes 530/10/2014



Software process models

 The waterfall model

 Plan-driven model. Separate and distinct phases of specification 
and development.

 Incremental development

 Specification, development and validation are interleaved. May 
be plan-driven or agile.

 Integration and configuration

 The system is assembled from existing configurable 
components. May be plan-driven or agile.

 In practice, most large systems are developed using a 
process that incorporates elements from all of these 
models.

Chapter 2 Software Processes 630/10/2014



The waterfall model

Chapter 2 Software Processes 730/10/2014



Waterfall model phases

 In the old days, Waterfall model was used to develop enterprise 
applications like Customer Relationship Management (CRM) 
systems, Human Resource Management Systems (HRMS), Supply 
Chain Management Systems, Inventory Management Systems, 
Point of Sales (POS) systems for Retail chains etc.

 The main drawback of the waterfall model is the difficulty of 
accommodating change after the process is underway. In principle, 
a phase has to be complete before moving onto the next phase.

Chapter 2 Software Processes 830/10/2014



Waterfall model problems

 Inflexible partitioning of the project into distinct stages 
makes it difficult to respond to changing customer 
requirements.

 Therefore, this model is only appropriate when the requirements 
are well-understood and changes will be fairly limited during the 
design process. 

 Few business systems have stable requirements.

 The waterfall model is mostly used for large systems 
engineering projects where a system is developed at 
several sites.

 In those circumstances, the plan-driven nature of the waterfall 
model helps coordinate the work. 

Chapter 2 Software Processes 930/10/2014



Waterfall model problems

Chapter 2 Software Processes 1030/10/2014



Incremental Development

 Incremental development is based on the idea of 
developing an initial implementation, exposing this to 
user comment and evolving it through several versions 
until an adequate system has been developed.

 Fundamental part of agile approaches.

 Each increment or version of the system incorporates 
some of the functionality that is needed by the customer.

30/10/2014 Chapter 2 Software Processes 11



Incremental development 

Chapter 2 Software Processes 1230/10/2014



Incremental development benefits

 The cost of accommodating changing customer 
requirements is reduced. 

 The amount of analysis and documentation that has to be 
redone is much less than is required with the waterfall model.

 It is easier to get customer feedback on the development 
work that has been done. 

 Customers can comment on demonstrations of the software and 
see how much has been implemented. 

More rapid delivery and deployment of useful software to 
the customer is possible. 

 Customers are able to use and gain value from the software 
earlier than is possible with a waterfall process. 

Chapter 2 Software Processes 1330/10/2014



Incremental development problems

 The process is not visible due to lack of documentation. 

 Managers need regular deliverables to measure progress. If 
systems are developed quickly, it is not cost-effective to produce 
documents that reflect every version of the system. 

 System structure tends to degrade as new increments 
are added. 

 Unless time and money is spent on refactoring to improve the 
software, regular change tends to corrupt its structure. 
Incorporating further software changes becomes increasingly 
difficult and costly. 

Chapter 2 Software Processes 1430/10/2014



Integration and configuration

 Based on software reuse where systems are integrated 
from existing components or application systems 
(sometimes called COTS -Commercial-off-the-shelf) 
systems).

 Reused elements may be configured to adapt their 
behaviour and functionality to a user’s requirements.

 Reuse is now the standard approach for building many 
types of business system.

Chapter 2 Software Processes 1530/10/2014



Types of reusable software

 Stand-alone application systems (sometimes called 
COTS) that are configured for use in a particular 
environment.

 Collections of objects that are developed as a package 
to be integrated with a component framework such as 
.NET or J2EE (e.g. EAR, JAR or WAR files).

Web services that are developed according to service 
standards and which are available for remote invocation. 

Chapter 2 Software Processes 1630/10/2014



Reuse-oriented software engineering

Chapter 2 Software Processes 1730/10/2014



Key process stages

 Requirements specification

 Software discovery and evaluation

 Requirements refinement

 Application system configuration

 Component adaptation and integration

Chapter 2 Software Processes 1830/10/2014



Advantages and disadvantages

 Reduced costs and risks as less software is developed 
from scratch

 Faster delivery and deployment of system

 But requirements compromises are inevitable so system 
may not meet real needs of users

 Loss of control over evolution of reused system elements

Chapter 2 Software Processes 1930/10/2014



Process activities

Chapter 2 Software Processes 2030/10/2014



Software specification

 The process of establishing what services are required 
and the constraints on the system’s operation and 
development.

 Requirements engineering process

 Requirements elicitation and analysis

• What do the system stakeholders require or expect from the system?

 Requirements specification

• Defining the requirements in detail

 Requirements validation

• Checking the validity of the requirements

Chapter 2 Software Processes 2130/10/2014



The requirements engineering process

Chapter 2 Software Processes 2230/10/2014



Software design and implementation

 The process of converting the system specification into 
an executable system.

 Software design

 Design a software structure that realises the specification;

 Implementation

 Translate this structure into an executable program;

 The activities of design and implementation are closely 
related and may be inter-leaved.

Chapter 2 Software Processes 2330/10/2014



Design activities

 Architectural design, where you identify the overall 
structure of the system, the principal components 
(subsystems or modules), their relationships and how 
they are distributed.

 Database design, where you design the system data 
structures and how these are to be represented in a 
database. 

 Interface design, where you define the interfaces 
between system components. 

 Component selection and design, where you search for 
reusable components. If unavailable, you design how it 
will operate. 

Chapter 2 Software Processes 2430/10/2014



A general model of the design process 

Chapter 2 Software Processes 2530/10/2014



System implementation

 The software is implemented either by developing a 
program or programs or by configuring an application 
system.

 Design and implementation are interleaved activities for 
most types of software system.

 Programming is an individual activity with no standard 
process.

 Debugging is the activity of finding program faults and 
correcting these faults.

Chapter 2 Software Processes 2630/10/2014



Software validation

 Verification and validation (V & V) is intended to show 
that a system conforms to its specification and meets the 
requirements of the system customer.

 Involves checking and review processes and system 
testing.

 System testing involves executing the system with test 
cases that are derived from the specification of the real 
data to be processed by the system.

 Testing is the most commonly used V & V activity.

Chapter 2 Software Processes 2730/10/2014



Stages of testing

Chapter 2 Software Processes 2830/10/2014



Testing stages

 Component testing

 Individual components are tested independently; 

 Components may be functions or objects or coherent groupings 
of these entities.

 System testing

 Testing of the system as a whole. Testing of emergent properties 
is particularly important.

 Customer testing

 Testing with customer data to check that the system meets the 
customer’s needs.

Chapter 2 Software Processes 2930/10/2014



Software evolution

 Software is inherently flexible and can change. 

 As requirements change through changing business 
circumstances, the software that supports the business 
must also evolve and change.

 Although there has been a demarcation between 
development and evolution (maintenance) this is 
increasingly irrelevant as fewer and fewer systems are 
completely new.

Chapter 2 Software Processes 3030/10/2014



System evolution 

Chapter 2 Software Processes 3130/10/2014



Coping with change

Chapter 2 Software Processes 3230/10/2014



Coping with change

 Change is inevitable in all large software projects.

 Business changes lead to new and changed system 
requirements

 New technologies open up new possibilities for improving 
implementations

 Changing platforms require application changes

 Change leads to rework so the costs of change include 
both rework (e.g. re-analysing requirements) as well as 
the costs of implementing new functionality

Chapter 2 Software Processes 3330/10/2014



Coping with changing requirements

 System prototyping, where a version of the system or 
part of the system is developed quickly to check the 
customer’s requirements and the feasibility of design 
decisions. This approach supports change anticipation. 

 Incremental delivery, where system increments are 
delivered to the customer for comment and 
experimentation. This supports both change avoidance 
and change tolerance. 

Chapter 2 Software Processes 3430/10/2014



Software prototyping

 A prototype is an initial version of a system used to 
demonstrate concepts and try out design options.

 A prototype can be used in:

 The requirements engineering process to help with requirements 
elicitation and validation;

 In design processes to explore options and develop a UI design;

 In the testing process to run back-to-back tests.

Chapter 2 Software Processes 3530/10/2014



Prototype development

May be based on rapid prototyping languages (e.g. Lisp) 
or tools

May involve leaving out functionality

 Prototype should focus on areas of the product that are not well-
understood;

 Error checking and recovery may not be included in the 
prototype;

 Focus on functional rather than non-functional requirements 
such as reliability and security

 http://tiborsimko.org/programming-rapid-prototyping.html

Chapter 2 Software Processes 3630/10/2014



Throw-away prototypes

 Prototypes should be discarded after development as 
they are not a good basis for a production system:

 It may be impossible to tune the system to meet non-functional 
requirements;

 Prototypes are normally undocumented;

 The prototype structure is usually degraded through rapid 
change;

 The prototype probably will not meet normal organisational
quality standards.

Chapter 2 Software Processes 3730/10/2014



Incremental delivery

 Rather than deliver the system as a single delivery, the 
development and delivery is broken down into 
increments with each increment delivering part of the 
required functionality.

 User requirements are prioritised and the highest priority 
requirements are included in early increments.

 Once the development of an increment is started, the 
requirements are frozen though requirements for later 
increments can continue to evolve.

Chapter 2 Software Processes 3830/10/2014



Incremental development and delivery

 Incremental development and deliveryu

 Develop the system in increments and evaluate each increment 
before proceeding to the development of the next increment;

 Normal approach used in agile methods;

 Deploy an increment for use by end-users;

 Evaluation done by user/customer proxy.

Chapter 2 Software Processes 3930/10/2014



Incremental delivery 

Chapter 2 Software Processes 4030/10/2014


