Chapter 6
Architectural Design

29/04/2019 1

Topics covered

<> Architectural design decisions
< Architectural views
< Architectural patterns

< Application architectures

29/04/2019 2

Architectural design

<> The output of the architectural design process is an
architectural model that describes how the system is
organized as a set of communicating components.

< It is generally accepted that an early stage of agile
processes is to design an overall systems architecture.

< Refactoring the system architecture is usually expensive
because it affects so many components in the system.

29/04/2019

Architectural abstraction

<> Architecture in the small is concerned with the
architecture of individual programs. At this level, we are
concerned with the way that an individual program is
decomposed into components.

< Architecture in the large is concerned with the
architecture of complex enterprise systems that include
other systems, programs, and program components.

29/04/2019

Architectural representations

< Simple, informal block diagrams showing entities and
relationships are the most frequently used method for
documenting software architectures.

<> Very abstract - they do not show the nature of
component relationships nor the externally visible
properties of the sub-systems.

<> However, useful for communication with stakeholders
and for project planning.

29/04/2019

Use of architectural models

< As a way of facilitating discussion about the system
design
= A high-level architectural view of a system is useful for

communication with system stakeholders and project planning
because it is not cluttered with detail.

< As a way of documenting an architecture that has been
designed

= The aim here is to produce a complete system model that shows
the different components in a system, their interfaces and their
connections.

29/04/2019 6

SN \
Software gineering

Architectural views

29/04/2019 7

Architectural views

Logical
view

Development
view

29/04/2019

System
architecture

Physical
view

Process
view

®

Software Engineering

4 + 1 view model of software architecture

< Alogical view, which shows the key abstractions in the
system as objects or object classes.

<> A process view, which shows how, at run-time, the
system is composed of interacting processes.

<> A development view, which shows how the software is
decomposed for development.

< A physical view, which shows the system hardware and
how software components are distributed across the
processors in the system.

< Related using use cases or scenarios (+1)

29/04/2019

4 + 1 view model of software architecture

A4

A 3
Software Engineering

Process View Logical View
Diagrams: Diagrams:

- Sequence - Class

- Communication - Object

- Composite Structure
1: foo

S e

f \
I [
| [

|esibo /
|enydaouo)

Scenario View

- Use Case
- User Stories

S
O 5
9 =
0 <
Implementation View Physical View o g
et
= a
Diagrams: Diagrams: g —
- Component - Deployment o
- Package - Nettwork Topology (not UML) e

29/04/2019 10

Logical view example

I

live stock quoke Shares

Live Stock Quote

[E—

T

daily sales ledger Sales

Sales Ledger Updates

imvestment figures

=

sales figures
T

Tax Reporting

i)

///7

Inventorsy

29/04/2019

inventary Figures

Software Engineering

11

Implementation/Development view example

advanced-build

community-build

\Y_

neodj-server

X
Al

g v
P> | neo4j
server-api |‘
; ; |
Hsodj-lide %4,7 neodj-community |

>I neodj-server-advanced |

!

|
——>{ neodj-advanced I
¥

neodj-management
L

\

\

neodj-ha

neodj-graphviz

neo4j-jmx neodj-shell

neo4j-graph-algo

A

neo4dj-lucene-index

le—!
| n—

neodj-cypher

1 NT T o NIv T [T 1

neodj-graph-matching|

|}
>| neodj-kernel i%

A h 4

— neo4j-enterprise |

A
L*{ neodj-backup I
Y ¥

neodj-cluster

‘I neodj-consistency-check

d

enterprise-build

|
i neo4j-server—enterpri==|

; Software Engineerin.g‘

<~ https://avandeursen.com/2013/12/30/teaching-software-architecture-with-github/

29/04/2019

12

Physical view example

Shows DB subsystem is deployed on a Database server

The deployment view of the software architecture shows where executables (COTS and
non-COTS) and data for the software are installed.

,,f

Adminisirator VWomstaton

% Wb Browser

Oracle RLDWS & UTITe=S

%%’ =

% Slared Procedures EFackages

Dala Reduction
==

A

i
% Instaliathon & LonTguraion Senpts

1
% High Avallabify Zuppod

29/04/2019

So

ftware Engineeriqg

13

Architectural patterns

29/04/2019 14

Architectural patterns

< Patterns are a means of representing, sharing and
reusing knowledge.

<> An architectural pattern is a stylized description of good
design practice, which has been tried and tested in
different environments.

< Patterns should include information about when they are
and when the are not useful.

< Patterns may be represented using tabular and graphical
descriptions.

29/04/2019 15

The Model-View-Controller (MVC) pattern

Description

Example

When used

29/04/2019

Separates presentation and interaction from the system data. The system is
structured into three logical components that interact with each other. The
Model component manages the system data and associated operations on
that data. The View component defines and manages how the data is
presented to the user. The Controller component manages user interaction
(e.g., key presses, mouse clicks, etc.) and passes these interactions to the
View and the Model.

A web-based application system organized using the MVC pattern.

Used when there are multiple ways to view and interact with data. Also used
when the future requirements for interaction and presentation of data are
unknown.

Allows the data to change independently of its representation and vice versa.
Supports presentation of the same data in different ways with changes made
in one representation shown in all of them.

16

The organization of the Model-View-Controller

Software Engineering

Controller View View
] selection
Maps user actions »| Renders model

to model updates Requests model updates

- -
Selects view Sends user events to
User events e e

Change
notification

State
change State query
Model

Encapsulates application
—»| state -

Notifies view of state
changes

29/04/2019 17

Web application architecture using the MVC
pattern

Software Engineering

Browser

Controller E View
orm to
) display :
HTTP request processing | " " | Dynamic page
Application-specific logic generation
idati <———— Forms management
Data validation User events g
A
Change
notification
Update Refresh request
request
Model

Business logic
Database

29/04/2019 18

Login MVC Pattern

Software Engmeering

Login
Control
- - ; 4
[l SiekEtad '”> Interpreter
<'-B- T Ear:flaﬂﬂandlar
User
MyPage
View

< Taken from docs.oracle.com

29/04/2019 19

Layered architecture

< Used to model the interfacing of sub-systems.

< Organises the system into a set of layers (or abstract
machines) each of which provide a set of services.

< Supports the incremental development of sub-systems in
different layers. When a layer interface changes, only the
adjacent layer is affected.

< However, often artificial to structure systems in this way.

29/04/2019 20

The Layered architecture pattern

Description

Example

When used

Advantages

Disadvantages

29/04/2019

Organizes the system into layers with related functionality
associated with each layer. A layer provides services to the layer
above it so the lowest-level layers represent core services that
are likely to be used throughout the system. See Figure 6.6.

A layered model of a system for sharing copyright documents
held in different libraries.

Used when building new facilities on top of existing systems;
when the development is spread across several teams with each
team responsibility for a layer of functionality; when there is a
requirement for multi-level security.

Allows replacement of entire layers so long as the interface is
maintained. Redundant facilities (e.g., authentication) can be
provided in each layer to increase the dependability of the
system.

In practice, providing a clean separation between layers is often
difficult and a high-level layer may have to interact directly with
lower-level layers rather than through the layer immediately
below it. Performance can be a problem because of multiple
levels of interpretation of a service request as it is processed at
each layer.

21

A generic layered architecture

29/04/2019

User interface

User interface management
Authentication and authorization

Core business logic/application functionality
System utilities

System support (OS, database etc.)

22

The architecture of the iLearn system

Software Engineering

Browser-based user interface iLearn app

Configuration services

Group Application Identity
management management management

Application services

Email Messaging Video conferencing Newspaper archive

Word processing Simulation Video storage Resource finder

Spreadsheet Virtual learning environment History archive

Utility services

Authentication Logging and monitoring Interfacing
User storage Application storage Search

29/04/2019 23

The architecture of a big data solution

MW i &

Business analysts Administrators

Business users

Model management

Machine Real time | [Decision | [Scoring of n | ||| Predictive || Statistical || Model
. scored || manage- | [events (real i odel models verification
NLP | | executi | results I b [amm(:m) ; Fadon

Big data sources

Structured, semi-structured, and unstructured
| Text ||images| | Audio | [Video | | spatial | | Temporal| | Documents | | Relational data | | Domain entties |

eouewanoh eep Big

{Buipuey uondaaxs ‘Aoeaud 'siapy ‘Aundas ‘ydjeyaas ‘Aujiqeliese ‘Kousnbay) Jake| sop

((puewap-uo/auIUC/RLILO) AIAIPBUUOD 'S|dY JAIRU ‘S1sdepe ‘$10129UU0d '§|020}0id) uoiesBaju)

| hardnens | | vanspossion | | "adty | | [cr] (o]
Tonizing radiation, || Themal, heat,

ormaion | | [Proxmay presenc] [ST

EFEEE

29/04/2019 24

Repository architecture

< Sub-systems must exchange data. This may be done in
two ways:
» Shared data is held in a central database or repository and may
be accessed by all sub-systems;

= Each sub-system maintains its own database and passes data
explicitly to other sub-systems.

< When large amounts of data are to be shared, the
repository model of sharing is most commonly used a
this is an efficient data sharing mechanism.

29/04/2019 25

The Repository pattern

Description

Example

When used

Advantages

Disadvantages

29/04/2019

All data in a system is managed in a central repository that is
accessible to all system components. Components do not
interact directly, only through the repository.

IDE where the components use a repository of system design
information. Each software tool generates information which is
then available for use by other tools.

You should use this pattern when you have a system in which
large volumes of information are generated that has to be
stored for a long time. You may also use it in data-driven
systems where the inclusion of data in the repository triggers
an action or tool.

Components can be independent—they do not need to know
of the existence of other components. Changes made by one
component can be propagated to all components. All data can
be managed consistently (e.g., backups done at the same
time) as it is all in one place.

The repository is a single point of failure so problems in the
repository affect the whole system. May be inefficiencies in
organizing all communication through the repository.
Distributing the repository across several computers may be
difficult.

26

A repository architecture for an IDE

UML
editors

Design
translator

|

Code
generators

|

29/04/2019

Project
repository

Java
editor

|

Design
analyzer

|

[\

Python
editor

Report
generator

27

Repository pattern example

Business Logic Pass the
Business Entity to
repository for Data
Persistence

Repository

Data Mapper
Entity Data
A0 otNetCUTY. com Access

Operations for [— Layer
CRUD

Client Business
Layer

Business Entities are
passed back to
Business Logic after
Query Execution

29/04/2019 28

Client-server architecture

<> Distributed system model which shows how data and
processing is distributed across a range of components.

»= Can be implemented on a single computer.

< Set of stand-alone servers which provide specific
services such as printing, data management, etc.

< Set of clients which call on these services.
<> Network which allows clients to access servers.

29/04/2019 29

The Client—server pattern

—= i
Software Engineering

Description In a client—server architecture, the functionality of the system is
organized into services, with each service delivered from a
separate server. Clients are users of these services and access
servers to make use of them.

Example An example of a film and video/DVD library organized as a client—
server system.
When used Used when data in a shared database has to be accessed from a

range of locations. Because servers can be replicated, may also be
used when the load on a system is variable.

Advantages The principal advantage of this model is that servers can be
distributed across a network. General functionality (e.g., a printing
service) can be available to all clients and does not need to be
implemented by all services.

Disadvantages Each service is a single point of failure so susceptible to denial of
service attacks or server failure. Performance may be unpredictable
because it depends on the network as well as the system. May be
management problems if servers are owned by different
organizations.

29/04/2019 30

A client—server architecture for a film library

Caemr) (a2) (s) (Caions)

N A

Internet

Catalog Video Picture Web

server server server server

Library Film store Photo store Film e!nd
catalogue photo info.

29/04/2019 31

Pipe and filter architecture

< Functional transformations process their inputs to
produce outputs.

<> May be referred to as a pipe and filter model (as in UNIX
shell).

<> Variants of this approach are very common. When
transformations are sequential, this is a batch sequential
model which is extensively used in data processing
systems.

< Not really suitable for interactive systems.

29/04/2019 32

The pipe and filter pattern

T \}y}\" 8
==
Software Engineering

Description The processing of the data in a system is organized so that each
processing component (filter) is discrete and carries out one type of
data transformation. The data flows (as in a pipe) from one component
to another for processing.

Example An example of a pipe and filter system used for processing invoices.

When used Commonly used in data processing applications (both batch- and
transaction-based) where inputs are processed in separate stages to
generate related outputs.

Advantages Easy to understand and supports transformation reuse. Workflow style
matches the structure of many business processes. Evolution by
adding transformations is straightforward. Can be implemented as
either a sequential or concurrent system.

Disadvantages The format for data transfer has to be agreed upon between
communicating transformations. Each transformation must parse its
input and unparse its output to the agreed form. This increases system
overhead and may mean that it is impossible to reuse functional
transformations that use incompatible data structures.

29/04/2019 33

Pipe and Filter Architecture

V.
V4

.\
Software Engineering

The "pumg”is the initiating The output of each filker
ewent: it "pumps" 3 operation becomes the input of
mess3ge inta the pipeline the nest filter aperation .
"|||||||I' IIIFFFI!!i'F ||iiiii||||\ IIIHFFI'!I" ‘liiiiilllll IIIFFFI!ii'} 1‘||||||||'
Each filter companent The "sink” isthe inal
peronms some sore of de=tination afthe
proce =zing ofthe mes=age ransformed message.

29/04/2019 34

An example of the pipe and filter architecture
used in a payments system

Issue .
()
Find Issue
= payments & payment b Reminders
due reminder

Read issued
invoices /

Invoices Payments

29/04/2019 35

Pipe and Filter Architecture Example

Software Engmeemng

capacity = 40 AN
capacity = 40 [end-of-data = empty record
end-of-data = empty record when-full = block for 2 sec and retry
when-full = block for 2 sec and retry when-empty = block for 30 sec and retry
when-empty = block for 30 sec and retry)
n
m«ou-uﬂu——f—-—{'”"] Sy
u‘. n Payment
: diers €)
capacity « 50 ! ‘FormatRejected
end-of-data = “EOT" String i Records
when-full = block for 2 sec and retry :
when-empty = block for 20 sec and retry v e 10
end-of-data = empty record
when-full = block for 2 sec and retry
when-emply = block for 80 sec and retry

© Len Bass, Paul Clements, Rick Kazman, distributed under Creative Commons Attribution License

29/04/2019 36

Application architectures

29/04/2019 37

Use of application architectures

<> A generic application architecture is an architecture for a
type of software system that may be configured and
adapted to create a system that meets specific
requirements.

< As a starting point for architectural design.
<> As a design checkilist.

<> As a way of organising the work of the development
team.

<> As a means of assessing components for reuse.
<> As a vocabulary for talking about application types.

29/04/2019 38

Examples of application types

<> Data processing applications

= Data driven applications that process data in batches without
explicit user intervention during the processing.

< Transaction processing applications

= Data-centred applications that process user requests and update
information in a system database.

<> Event processing systems

= Applications where system actions depend on interpreting
events from the system’s environment.

<> Language processing systems

= Applications where the users’ intentions are specified in a formal
language that is processed and interpreted by the system.

29/04/2019 39

Application type examples

< Two very widely used generic application architectures are
transaction processing systems and language processing
systems.

< Transaction processing systems

= E-commerce systems;
= Reservation systems.

< Language processing systems
= Compilers;
= Command interpreters.

29/04/2019 40

Transaction processing systems

<> Process user requests for information from a database
or requests to update the database.

< From a user perspective a transaction is:

= Any coherent sequence of operations that satisfies a goal;
= For example - find the times of flights from London to Paris.

< Users make asynchronous requests for service which
are then processed by a transaction manager.

29/04/2019 41

The structure of transaction processing
applications

/0O Applicati Ti ti
/ pplication ransaction Database

processing logic manager

29/04/2019 42

The software architecture of an ATM system

s A A]
Software Engineering

Input Process Output

Get customer

) Print details
account id

Query account

Return card

Validate card >

Update account

Select service Dispense cash

dild
3{3
LG

ATM Database ATM

29/04/2019 43

Information systems architecture

< Information systems have a generic architecture that can
be organised as a layered architecture.

< These are transaction-based systems as interaction with
these systems generally involves database transactions.

< Layers include:

= The user interface

= User communications
= |nformation retrieval
= System database

29/04/2019 44

Layered information system architecture

29/04/2019

User interface

Authentication and

User communications atit
authorization

Information retrieval and modification

Transaction management

Database

45

The architecture of the Mentcare system

29/04/2019

Web browser

Form and menu Data

Login Role checking manager validation

Security Patient info. Data import Report
management manager and export generation

Transaction management

Patient database

46

Web-based information systems

< Information and resource management systems are now
usually web-based systems where the user interfaces
are implemented using a web browser.

< For example, e-commerce systems are Internet-based
resource management systems that accept electronic
orders for goods or services and then arrange delivery of
these goods or services to the customer.

< In an e-commerce system, the application-specific layer
includes additional functionality supporting a ‘shopping
cart’ in which users can place a number of items in
separate transactions, then pay for them all together in a
single transaction.

29/04/2019 47

Server implementation

< These systems are often implemented as multi-tier client
server/architectures
= The web server is responsible for all user communications, with
the user interface implemented using a web browser;

= The application server is responsible for implementing
application-specific logic as well as information storage and
retrieval requests;

= The database server moves information to and from the
database and handles transaction management.

29/04/2019 48

Language processing systems

<> Accept a natural or artificial language as input and generate
some other representation of that language.

< May include an interpreter to act on the instructions in the
language that is being processed.

< Used in situations where the easiest way to solve a
problem is to describe an algorithm or describe the system
data

= Meta-case tools process tool descriptions, method rules, etc
and generate tools.

29/04/2019 49

The architecture of a language processing

system

Source
language
instructions

Translator

Check syntax
Check semantics
Generate

'

Abstract m/c
instructions

i

Data

Interpreter

29/04/2019

Fetch
Execute

Results

oW

Software Engmeering

50

Compiler components

< A lexical analyzer, which takes input language tokens
and converts them to an internal form.

< A symbol table, which holds information about the names
of entities (variables, class names, object names, etc.)
used in the text that is being translated.

< A syntax analyzer, which checks the syntax of the
language being translated.

< A syntax tree, which is an internal structure representing
the program being compiled.

29/04/2019 51

Compiler components

< A semantic analyzer that uses information from the
syntax tree and the symbol table to check the semantic
correctness of the input language text.

< A code generator that ‘walks’ the syntax tree and
generates abstract machine code.

29/04/2019 52

A repository architecture for a language
processing system

Lexical Syntax Semantic
analyzer analyzer analyzer
Pretty- Abstract Grammar .
) <> . .. <—>»(Optimizer
printer syntax tree definition
: Symbol Output Code
Editor <> S <>
table definition generator

Repository

29/04/2019 53

A pipe and filter compiler architecture

Symbol table

Syntax tree

Lexical Syntactic Semantic Code
analysis analysis analysis generation

29/04/2019 54

Key points

<> A software architecture is a description of how a software
system is organized.

< Architectural design decisions include decisions on the
type of application, the distribution of the system, the
architectural styles to be used.

<> Architectures may be documented from several different
perspectives or views such as a conceptual view, a
logical view, a process view, and a development view.

<> Architectural patterns are a means of reusing knowledge
about generic system architectures. They describe the
architecture, explain when it may be used and describe
its advantages and disadvantages.

29/04/2019 55

Key points

<> Models of application systems architectures help us
understand and compare applications, validate
application system designs and assess large-scale
components for reuse.

< Transaction processing systems are interactive systems
that allow information in a database to be remotely
accessed and modified by a number of users.

<> Language processing systems are used to translate
texts from one language into another and to carry out the
Instructions specified in the input language. They include
a translator and an abstract machine that executes the
generated language.

29/04/2019 56

