
Design Patterns

15/1/2019

Gangs of Four (GOF)

• In 1994, four authors Erich Gamma, Richard Helm, Ralph
Johnson and John Vlissides published a book titled Design
Patterns - Elements of Reusable Object-Oriented Software.

• These authors are collectively known as Gang of Four (GOF)

• According to these authors design patterns are primarily
based on the following principles of object orientated design

• Program to an interface not an implementation

• Favor object composition over inheritance

Design Patterns

• Design Pattern
– A description of a problem and its solution that you can apply to

many similar programming situations

• Patterns:
– facilitate reuse of good, tried-and-tested solutions

– capture the structure and interaction between components

– Object-oriented design patterns typically show relationships and
interactions between classes or objects, without specifying the
final application classes or objects that are involved

Why is this important?
• Using proven, effective design patterns can make you a better

software designer & coder

• You will recognize commonly used patterns in others’ code

– Java API

– Project team members

– Ex-employees

• And you'll learn when to apply them to your own code

– experience reuse (as opposed to code reuse)

– we want you thinking at the pattern level

In addition, different technologies have their
own patterns:

Servlet patterns, GUI patterns, etc …

Common Design Patterns

• Factory
• Singleton
• Builder
• Prototype

• Decorator
• Adapter
• Facade
• Flyweight
• Component

architecture

• Strategy
• Template
• Observer
• Command
• Iterator
• State

Textbook: Head First Design Patterns

Creational Structural Behavioral

Creational Design Pattern

• Creational design patterns provide a way to create objects
while hiding the creation logic, rather than instantiating
objects directly using new operator.

• This gives program more flexibility in deciding which objects
need to be created for a given use case.

The Factory Pattern
• Factories make stuff

• Factory classes make objects

• Shouldn't constructors do that?
– factory classes employ constructors

• What's the point?
– prevent misuse/improper construction
– hides construction
– provide API convenience
– one stop shop for getting an object of a family type

What objects do factories make?

• Typically objects of the same family
– common ancestor
– same apparent type
– different actual type

• Factory Pattern in the Java API:
– BorderFactory.createXXXBorder methods

•return apparent type of Border
•return actual types of BevelBorder, EtchedBorder, etc …

– lots of factory classes in security packages

Factory Pattern Bonus
• The programmer using the Factory class never needs to

know about the actual class/type
– simplifies use for programmer

– fewer classes to learn

• Ex: Using BorderFactory, one only needs to know Border &
BorderFactory
– not TitledBorder, BeveledBorder, EtchedBorder, etc.

Factory Pattern Example

– https://www.tutorialspoint.com/design_pattern/factory_pattern.htm

The Singleton Pattern

• Define a type where only one object of that type
may be constructed:
– make the constructor private.
– singleton object favorable to fully static class, why?

•can be used as a method argument
•class can be extended

• What makes a good singleton candidate?
– central app organizer class

– something everybody needs

Example: The PropertiesManager Singleton

public class PropertiesManager
{

private static PropertiesManager singleton
= null;

private PropertiesManager() {}

public static PropertiesManager
getPropertiesManager()

{
if (singleton == null)
{ singleton = new PropertiesManager();
}
return singleton;

}
…
}

What's so great about a singleton?

• Other classes may now easily USE the PropertiesManager

PropertiesManager singleton =

PropertiesManager.getPropertiesManager();

Singleton.dowhaterver()

• Don’t have to worry about passing objects around

• Don’t have to worry about object consistency

• Note: the singleton is of course only good for classes that will never
need more than one instance in an application

• https://www.tutorialspoint.com/design_pattern/singleton_pattern.htm

Singleton Pattern Example

• https://www.tutorialspoint.com/design_pattern/singleton_pattern.htm

The Builder Pattern

• Use the Builder Pattern to:
• encapsulate the construction of a product

• allow it to be constructed in steps

• Good for complex object construction
• objects that require lots of custom initialized pieces

• Scenario:
• build a JavaFX component

• put it in its container

• register it by id to be retrieved later

• add a style class

• etc.

The Builder Pattern

public class AppNodesBuilder {

public CheckBox buildCheckBox(
public ColorPicker buildColorPicker(

public ComboBox buildComboBox(

public HBox buildHBox(
public Label buildLabel(

public Slider buildSlider(

public VBox buildVBox(
public Button buildIconButton(

public Button buildTextButton(

public ToggleButton buildIconToggleButton(
public ToggleButton buildTextToggleButton(

public TextField buildTextField(

public TableView buildTableView(
public TableColumn buildTableColumn(

…

}

Using a builder

// INIT CONTROLS
HBox nameOwnerPane = tdlBuilder.buildHBox(…
HBox namePane = tdlBuilder.buildHBox(…
Label nameLabel = tdlBuilder.buildLabel(…
TextField nameTextField = tdlBuilder.buildTextField(…
HBox ownerPane = tdlBuilder.buildHBox(…
Label ownerLabel = tdlBuilder.buildLabel(…
TextField ownerTextField = tdlBuilder.buildTextField(…

Builder Benefits

• Encapsulates the way a complex object is constructed.

• Allows objects to be constructed in a multistep and
varying process (as opposed to one step factories).

• Hides the internal representation of the product from the
client.

• Product implementations can be swapped in and out
because the client only sees an abstract interface.

Builder Pattern Example

• https://www.tutorialspoint.com/design_pattern/builder_pattern.htm

The Prototype Pattern

• Use the Prototype Pattern when creating an instance of a given
class is either expensive or complicated.

• This pattern involves implementing a prototype interface
which tells to create a clone of the current object.

• This pattern is used when creation of object directly is costly.

• For example, an object is to be created after a costly database
operation.

• We can cache the object, returns its clone on next request and
update the database as and when needed thus reducing
database calls.

So what does the Prototype Pattern do?

• Allows you to make new instances by copying existing
instances

• in Java this typically means using the clone() method,
or de-serialization when you need deep copies

• A key aspect of this pattern is that the client code can make
new instances without knowing which specific class is
being instantiated

Prototype Benefits

• Hides the complexities of making new instances from
the client.

• Provides the option for the client to generate objects
whose type is not known.

• In some circumstances, copying an object can be more
efficient than creating a new object.

Prototype Uses and Drawbacks

• Prototype should be considered when a system must create
new objects of many types in a complex class hierarchy.

• A drawback to using the Prototype is that making a copy
of an object can sometimes be complicated.

A Prototype Pattern Example

https://www.tutorialspoint.com/design_pattern/prototype_pattern.htm

Structural Design Patterns
• These design patterns concern class and object

composition.

• Concept of inheritance is used to compose interfaces and
define ways to compose objects to obtain new
functionalities.

The Decorator Pattern

• Attaches additional responsibilities to an object dynamically.

• i.e. decorating an object

• Decorators provide a flexible alternative to sub-classing for
extending functionality

• How?

• By wrapping an object

• Works on the principle that classes should be open to extension
but closed to modification

• Allow classes to be easily extended to incorporate new behavior
without modifying existing code

Decorators Override Functionality

Java’s IO Library

Decorator Pattern Example

https://www.tutorialspoint.com/design_pattern/decorator_pattern.htm

Ever been to Europe?
• This is an abstraction of the Adapter Pattern

The Adapter Pattern
• Converts the interface of a class into another interface a client expects

• Adapter lets classes work together that couldn’t otherwise because of
incompatible interfaces

• Interfaces?
• Do you know what a driver is?

Adapter Scenario
• You have an existing system

• You need to work a vendor library into the system

• The new vendor interface is different from the last vendor

• You really don’t want to change your existing system

• Solution?
• Make a class that adapts the new vendor interface into what the system uses

Adapter Visualized

How do we do it?
• Ex: Driver

• Existing system uses a driver via an interface

• New hardware uses a different interface

• Adapter can adapt differences

• Existing system HAS-A OldInterface

• Adapter implements OldInterface and HAS-A NewInterface

• Existing system calls OldInterface methods on adapter, adapter
forwards them to NewInterface implementations

What’s good about this?
• Decouple the client from the implemented interface

• If we expect the interface to change over time, the adapter
encapsulates that change so that the client doesn’t have to be
modified each time it needs to operate against a different
interface.

Adapter Pattern Example

https://www.tutorialspoint.com/design_pattern/adapter_pattern.htm

The Facade Pattern
• Provides a unified interface to a set of interfaces in a subsystem.

• The facade defines a higher-level interface that makes the subsystem
easier to use

• Employs the principle of least knowledge

• A facade is a class or a group of classes hiding internal
implementation/services from the user.

• The factory pattern is used when you want to hide the details on
constructing instances.

Scenario: We need a dialog
• Making a dialog can be a pain

• setting up controls

• providing layout

• many common simple dialogs needed

• applications like common presentation settings

• Solution?
• AppDialogsFacade

AppDialogsFacade
public class AppDialogsFacade {

public static void showAboutDialog(

public static void showExportDialog(

public static void showHelpDialog(

public static void showLanguageDialog(

public static void showMessageDialog(

public static File showOpenDialog(

public static File showSaveDialog(

public static void showStackTraceDialog(

public static String showTextInputDialog(

public static String showWelcomeDialog(

public static ButtonType showYesNoCancelDialog(

}

Tutorial

https://www.tutorialspoint.com/design_pattern/facade_pattern.htm

Which is which?
• Converts one interface to another

• Makes an interface simpler

• Doesn’t alter the interface, but adds responsibility

A) Decorator

B) Adapter

C) Facade

The Flyweight Pattern
• A “neat hack”

• Allows one object to be used to represent many identical instances
– Flyweights must be immutable.

– Flyweights depend on an associated table
•maps identical instances to the single object that represents all of them

• Used in processing many large documents
– search engines

– a document as an array of immutable Strings

– repeated Words would share objects

– just one object for “the” referenced all over the place
•use static Hashtable to store mappings

• The flyweight pattern is used to minimize the amount of memory used when you need to create a large
number of similar objects. It accomplishes this by sharing instances.

• The name derives from the weight classification in boxing, but refers to the little amount of memory. That
is, memory = weight.

Flyweight Pattern Example

https://www.tutorialspoint.com/design_pattern/flyweight_pattern.htm

A Component Architecture

• System uses a set of pluggable components

• Each component:
• can be plugged in

• can be updated

• can be replaced

independently of the other components

AppTemplate uses Components

• With Default behavior:
• AppFileModule

• AppFoolproofModule

• AppGUIModule

• AppLanguageModule

• AppRecentWorkModule

• With Custom behavior:
• AppClipboardComponent

• AppDataComponent

• AppFileComponent

• AppWorkspaceComponent

Behavioral Design Pattern

• These design patterns are specifically concerned with communication between
objects.

• Increase flexibility in carrying out communication between objects.

• https://www.youtube.com/watch?v=kiTDR0YoIqA

The Strategy Pattern

• How does it work?
– defines a family of algorithms, encapsulates each one, and makes them interchangeable
– lets the algorithm vary independently from the clients that use them

• A class behavior or its algorithm can be changed at run time.

• In Strategy pattern, we create objects which represent various strategies and a context object
whose behavior varies as per its strategy object.

• The strategy object changes the executing algorithm of the context object.

• Classes can be composed (HAS-A) of the interface type
– the interface type is the apparent type
– the actual type can be determined at run-time

Strategy Pattern Example

https://www.youtube.com/watch?v=QKeL46JoDU4
https://www.tutorialspoint.com/design_pattern/strategy_pattern.htm

Template Method Pattern

• Defines the skeleton of an algorithm in a method, deferring some steps
to subclasses.

• Lets subclasses redefine certain steps of an algorithm without changing
the algorithm’s structure.

• A template for an algorithm

• https://www.youtube.com/watch?v=bPVDEkl1z0o

Template Method Pattern

Template Method Pattern

What’s a hook?

• A type of method

• Declared in the abstract class
• only given an empty or default implementation

• Gives subclasses the ability to “hook into” the algorithm at various
points, if they wish

• a subclass is also free to ignore the hook.

Template Design Pattern Example

The Observer Pattern

• Defines a one-to-many dependency between objects so that when one
object changes state, all of its dependents are notified and updated
automatically.

• Hmm, where have we seen this?
– in our GUI

• State Manager class maintains application's state
– call methods to change app's state
– app's state change forces update of GUI

TableView
• Used to display spreadsheets and tables

• How is the table data stored?

• in an ObservableList

• we call this the table’s data model

Editing the table

• To edit the table, you must go through the model:
TableView table = new TableView(…
ObservableList<DataPrototype> model = table.getItems();

// Add Data
model.add(…

// Remove Data
model.remove(…

// Change Data
DataPrototype data = model.get(…
data.set(…

// UPDATING THE MODEL (ObservableList) AND/OR THE DATA (DataPrototype)
// WILL AUTOMATICALLY UPDATE THE VIEW (TableView) THANKS TO MVC!

Complex Controls have their own States

• Tables, trees, lists, combo boxes, etc.
– data is managed separately from the view

– when state changes, view is updated

• This is called MVC

– Model

– View

– Controller

• MVC employs the Observer Pattern

MVC employs the Observer Pattern
• Model

– data structure, no visual representation
– notifies views when something interesting happens

• View
– visual representation
– views attach themselves to model in order to be notified

• Controller
– event handler
– listeners that are attached to view in order to be notified of user interaction (or

otherwise)

• MVC Interaction
– controller updates model
– model tells view that data has changed
– view redrawn

Controller Model View

update (add, etc.)

notify

return

return

repaint

MVC Architecture

Model View

Controller

The model passes its data to the
view for rendering

The view determines which
events are passed to the

controller
The controller updates the model

based on events received

Observer Design Pattern Example

https://www.tutorialspoint.com/design_pattern/observer_pattern.htm

Command Abstraction
• For many GUIs, a single function may be triggered by many means (e.g.,

keystroke, menu, button, etc…)
– we want to link all similar events to the same listener

• The information concerning the command can be abstracted to a
separate command object

• Common Approach:
– specify a String for each command

• have listener respond to each command differently

– ensure commands are handled in a uniform way

– commands can be specified inside a text file

– The Command Pattern

https://www.youtube.com/watch?v=iNKvqMiPtmY

Command Design Pattern Example

https://www.tutorialspoint.com/design_pattern/command_pattern.htm

Iteration
• What’s the problem?

– you have to perform some operation on a sequence of elements in a
given data structure

• Solution:
– Iterator Pattern a.k.a. Iteration Abstraction

•iterate over a group of objects without revealing details of how the items are
obtained

https://www.youtube.com/watch?v=Pganyj1dVVU

Iterator
• An Iterator produces proper elements for processing

• Defining an Iterator may be complex

• Using an Iterator must be simple
– they’re all used in the same way

• E.g. update() all elements of List list:
Iterator it;

for (it=list.listIterator(); it.hasNext();)

it.next().update();

• Makes iteration through elements of a set “higher level”

• Separates the production of elements for iteration from the operation at
each step in the iteration.

Iterator (cont’d)
• Iterator is a design pattern that is encountered very often.

– Problem: Mechanism to operate on every element of a set.
– Context: The set is represented in some data structure (list, array,

hashtable, etc.)
– Solution: Provide a way to iterate through every element.

• Common Classes using Iterators in Java API
– StringTokenizer
– Vector, ArrayList, etc …
– Even I/O streams work like Iterators

Iterator (in Java)
public interface Iterator {

// Returns true if there are more
// elements to iterate over; false
// otherwise
public boolean hasNext();

// If there are more elements to
// iterate over, returns the next one.
// Modifies the state “this” to record
// that it has returned the element.
// If no elements remain, throw
// NoSuchElementException.
public Object next()

throws NoSuchElementException;

public void remove();
}

Iterator vs. Enumeration
• Java provides another interface Enumeration for iterating over a

collection.
• Iterator is

– newer (since JDK 1.2)

– has shorter method names

– has a remove() method to remove elements from a collection during iteration

• Iterator Enumeration

hasNext() hasMoreElements()

next() nextElement()

remove() -

• Iterator is recommended for new implementations.

Example Loop controlled by next()
private Payroll payroll = new Payroll();

...

public void decreasePayroll() {

Iterator it = payroll.getIterator();

while (it.hasNext()) {

Employee e = (Employee)it.next();

double salary = e.getSalary();

e.setSalary(salary*.9);

}

for (Employee emp : payroll) {

}

}

Implementing an Iterator
public class Payroll {

private Employee[] employees;
private int num_employees;
...
// An iterator to loop through all Employees
public Iterator getIterator() {

return new EmplGen();
}
...
private class EmplGen implements Iterator {
// see next slide
...
}

}

Implementing an Iterator
private class EmplGen implements Iterator {

private int n = 0;

public boolean hasNext() {
return n < num_employees;

}

public Object next() throws NoSuchElementException {
Object obj;
if (n < num_employees) {

obj = employees[n];
n++;
return obj;

}
else throw new NoSuchElementException
("No More Employees");

}
}

state of iteration
captured by index n

returns true if there
is an element left
to iterate over

returns the next
element in the
iteration sequence

Iterator Design Pattern Example

https://www.tutorialspoint.com/design_pattern/iterator_pattern.htm

State Pattern
• Dynamically change the representation of an object.

– also called Data Abstraction

• Users of the object are unaware of the change.

• Example:
– Implement a set as a Vector if the number of elements is small

– Implement a set as a Hashtable if the number of elements is large

• State pattern is used only on mutable objects.

Example: Set
public class Set {

private Object elements;

public boolean isIn(Object member){
if (elements instanceof Vector)

// search using Vector methods
else

// search using Hashtable methods
}

public void add(Object member){
if (elements instanceof Vector)

// add using Vector methods
else

// add using Hashtable methods
}

}

Using the state pattern: SetRep
public interface SetRep {

public void add(object member);
public boolean isIn(Object member);
public int size();
public void remove();

}

public class SmallSet implements SetRep {
private Vector set;
public void add(Object element) { ... }
public void remove() { ... }
...

}

public class LargeSet implements SetRep {
private Hashtable set;
public void add(Object element) { ... }
public void remove() { ... }
...

}

Using the state pattern: a new Set
public class Set {

private SetRep rep;
private int threshold;

public void add(Object element) {
if (rep.size() == threshold)

rep = new LargeSet(rep.elements());
rep.add(element);

}

public void remove(Object element) {
rep.remove(elem);
if (rep.size == threshold)

rep = new SmallSet(rep.elements());
}

}

State Pattern Example

https://www.tutorialspoint.com/design_pattern/state_pattern.htm

There are others too
• Chain of Responsibility

• Composite

• Interpreter

• Mediator

• Memento

• Proxy

• Visitor

