= {
Software gineering

Design Patterns

5/1/2019 1



Gangs of Four (GOF)

e In 1994, four authors Erich Gamma, Richard Helm, Ralph
Johnson and John Vlissides published a book titled Design
Patterns - Elements of Reusable Object-Oriented Software.

e These authors are collectively known as Gang of Four (GOF)

e According to these authors design patterns are primarily
based on the following principles of object orientated design

* Program to an interface not an implementation

« Favor object composition over inheritance



Design Patterns

* Design Pattern

— A description of a problem and its solution that you can apply to
many similar programming situations

» Patterns:
— facilitate reuse of good, tried-and-tested solutions
— capture the structure and interaction between components

— Object-oriented design patterns typically show relationships and
interactions between classes or objects, without specifying the
final application classes or objects that are involved



s

Why is this important?

« Using proven, effective design patterns can make you a better
software designer & coder

* You will recognize commonly used patterns in others’ code

— Java API i : : :
In addition, different technologies have their
— Project team members  own patterns:

_ EX-employees Servlet patterns, GUI patterns, etc ...

And you'll learn when to apply them to your own code

— experience reuse (as opposed to code reuse)

— we want you thinking at the pattern level



Common Design Patterns

Creational Structural

* Factory
 Singleton
e Builder
* Prototype




Creational Design Pattern

« Creational design patterns provide a way to create objects
while hiding the creation logic, rather than instantiating
objects directly using new operator.

e This gives program more flexibility in deciding which objects
need to be created for a given use case.



The Factory Pattern

Factories make stuff
Factory classes make objects

Shouldn't constructors do that?
— factory classes employ constructors

What's the point?
— prevent misuse/improper construction
— hides construction
— provide API convenience
— one stop shop for getting an object of a family type

=i i
Software Engineering




=i i
Software Engineering

What objects do factories make?

» Typically objects of the same family
— common ancestor
— Same apparent type
— different actual type

« Factory Pattern in the Java API:
— BorderFactory.create XXXBorder methods

sreturn apparent type of Border
sreturn actual types of BevelBorder, EtchedBorder, etc ...

— lots of factory classes in security packages



Factory Pattern Bonus

* The programmer using the Factory class never needs to
know about the actual class/type

— simplifies use for programmer

— fewer classes to learn

e Ex: Using BorderFactory, one only needs to know Border &
BorderFactory

— not TitledBorder, BeveledBorder, EtchedBorder, etc.



Factory Pattern Example

FactoryPattern

Shape z<|nterface»> Demo

+main{} : void
+drawl() : void

r
implements implements asks
implements
Circle Square Rectangle &
ShapeFactory
creates
e
+draw() : void +draw() : void +draw() : void +getShape() :
Shape

— https://www.tutorialspoint.com/design_pattern/factory pattern.htm




The Singleton Pattern

« Define a type where only one object of that type
may be constructed:

— make the constructor private.

— singleton object favorable to fully static class, why?
ecan be used as a method argument
eclass can be extended

 What makes a good singleton candidate?
— central app organizer class
— something everybody needs



Example: The PropertiesManager Singleton

{

public class PropertiesManager

private static PropertiesManager singleton

private PropertiesManager () {}

public static PropertiesManager

getPropertiesManager ()

{
if (singleton == null)
{ singleton =

}

return singleton;

new PropertiesManager () ;

null;



uf&/ar‘e Engineefing

What's so great about a singleton?

* Other classes may now easily USE the PropertiesManager

PropertiesManager singleton =
PropertiesManager.getPropertiesManager () ;

Singleton.dowhaterver ()

« Don’t have to worry about passing objects around
« Don’t have to worry about object consistency

* Note: the singleton is of course only good for classes that will never
need more than one instance in an application

e https://www.tutorialspoint.com/design pattern/singleton pattern.htm




Singleton Pattern Example

SingletonPatternDemo

+main() : void

asks

¥
SingleObject returns

-instance: SingleObject

-SingleObject ()
+getinstance(}:SingleChject
+showMessage():void

* https://www.tutorialspoint.com/design pattern/singleton pattern.htm




The Builder Pattern BL3 N

aftware Engineering

* Use the Builder Pattern to:

 encapsulate the construction of a product

 allow it to be constructed in steps

* Good for complex object construction

» objects that require lots of custom initialized pieces

* Scenario:
* build a JavaFX component
e put it in its container
 register it by id to be retrieved later
« add a style class
* cftc.



The Builder Pattern

public
public
public
public
public
public
public
public
public
public
public
public
public
public

public class AppNodesBuilder {

CheckBox buildCheckBox (

ColorPicker buildColorPicker (
ComboBox buildComboBox (

HBox buildHBox (

Label buildLabel (

Slider buildSlider (

VBox buildVBox (

Button buildIconButton (

Button buildTextButton (
ToggleButton buildIconToggleButton (
ToggleButton buildTextToggleButton (
TextField buildTextField (

TableView buildTableView (
TableColumn buildTableColumn (




Using a builder =

pes L\ ) H
Software Engineering

// INIT CONTROLS

HBox nameOwnerPane = tdlBuilder .buildHBox(..

HBox namePane = tdlBuilder.buildHBox(...

Label namelabel = tdlBuilder.buildLabel (..

TextField nameTextField = tdlBuilder.buildTextField(...
HBox ownerPane = tdlBuilder.buildHBox(...

Label ownerlabel = tdlBuilder.buildLabel (..

TextField ownerTextField = tdlBuilder.buildTextField(..



Builder Benefits

Encapsulates the way a complex object 1s constructed.

Allows objects to be constructed in a multistep and
varying process (as opposed to one step factories).

Hides the internal representation of the product from the
client.

Product implementations can be swapped in and out
because the client only sees an abstract interface.




Builder Pattern Example |

Item Meal MealBuilder
p uses -items : Amraylist <item=> builds
+name() : String +addltem(ltem item) : void +prepareVegMeal() :
+packing() : Packing +getCost() : float Meal
+price() : float +showitems() : void rprepareNonVegMeal()
[ : Meal
implement I
ks
Packing B
BuilderPattern
T Demo
implement implement +main(} : void
Burger Wrapper Bottle ColdDrink
sas Uuses
Iq _
extend extend
VegBurger ChickenBurger Pepsi Coke

* https://www.tutorialspoint.com/design pattern/builder pattern.htm




The Prototype Pattern

Use the Prototype Pattern when creating an instance of a given
class is either expensive or complicated.

This pattern involves implementing a prototype interface
which tells to create a clone of the current object.

This pattern 1s used when creation of object directly 1s costly.

For example, an object is to be created after a costly database
operation.

We can cache the object, returns its clone on next request and
update the database as and when needed thus reducing
database calls.



So what does the Prototype Pattern do?

« Allows you to make new instances by copying existing
instances

 1n Java this typically means using the clone() method,
or de-serialization when you need deep copies

* Akey aspect of this pattern is that the client code can make
new 1nstances without knowing which specific class 1s
being instantiated



Prototype Benefits

Hides the complexities of making new instances from
the client.

Provides the option for the client to generate objects
whose type 1s not known.

In some circumstances, copying an object can be more
efficient than creating a new object.



Prototype Uses and Drawbacks

Prototype should be considered when a system must create
new objects of many types in a complex class hierarchy.

A drawback to using the Prototype is that making a copy
of an object can sometimes be complicated.



A Prototype Pattern Example

Shape

-id : String
Hiype - string

+getType() : void
+gethd() : String
esetid() : void
sclone(): Object

clones

PrototypePatternDemo

+main() : void

1 asks

ShapeCache

-shapeMap : HashMap

[ Y
extends extends
extends
Circle Rectangle Square
-type ! 5tring -type 1 5tring type : 5tring

+getType{) :veld
+getid() : String
+setld() : void
+clone(): Object

+getType() - void
+getid() : String
#setid{) : void
«clone(): Object

+getType({) : void
+getid() : String
+setid() : void
+clonel): Object

+getShape() : Shape
+loadCache(): void

https://www.tutorialspoint.com/design pattern/prototype pattern.htm

: s
Software Eng




Structural Design Patterns

» These design patterns concern class and object
composition.

e Concept of inheritance is used to compose interfaces and
define ways to compose objects to obtain new
functionalities.



The Decorator Pattern

Attaches additional responsibilities to an object dynamically.

* 1.€. decorating an object

Decorators provide a flexible alternative to sub-classing for
extending functionality

How?

* By wrapping an object

Works on the principle that classes should be open to extension
but closed to modification

Allow classes to be easily extended to incorporate new behavior
without modifying existing code



Decorators Override Functionality

Eath tomponent an be used on its
own, or wrapped by a detorator.

compoanent

The ContveteComponent
is the object we've going
to dynamically add new
behavior to. [t extends

~

Eath detorator HAS—A

(wraps) a component, whith
means the decorator has an
instante variable that holds

a vefevente o a component.

CGM?M£' CencreteComponent Decorator
medhodff) miethodi])
miethods(] miethadS)
It olher methads 1 olher methads ; icmﬂh‘t +he
atows v
\( Detor Y bs'bl'aﬂ-t

ﬂ

Th Canﬂrt'thct.orator hﬂilah
'ms:-,anu variable For the ":.h'mg

it detovates (the Cﬂh?ﬂ“‘:“'t
the Decorabor wraps)-

same inkerfate or 3
the tomponen
detorate

they

elass as

ConcretaDacorators ConcreteDecoratorB

Compoanent wrappedObj Componant wrappadObj

=

Cbject newStabs

methodi)
mﬂlhl:-dEl[]_ methodAf) Dcc_wa{;ars £an ﬂ":ﬁndt‘thf
rraw Bahaviar) methodBi) skate of Hhe tomponent:

W ather methods

i othar mathods

Detorators tan add new methods; however, new
behavior is l;wica!ly added b‘ir doing computation
befove or after an existing method in the tomponent



Java’s 10 Library

i AW
Software Engineering

A text file for veading,.

ot

Fﬂ-ﬂ“?’"":'g_w;m
L tnats ben}
ated T':: Java I/0 Iihrz?‘ﬂinﬁ
: ecdl LomponeEL T o kS hream)
o, Shorimgie :
LineNumbernputStream is Fi‘-elrﬁ“{"sjc’.:-ﬁ ::5 :;ind a kew “?E:;
alse a Caruf.ﬂ'!;t dﬂﬂﬂi‘ﬂ'!:ﬂ-l". E\f{:ﬂhﬂa\f “?1:[\1‘& a base tﬂm?a“t“
I+ adds the ability 4o BufferedlnputStream Al ok bhese O
tount the line nurr?rhc is a contrete detorator. wmith o vead h‘fﬁs
it veads data. b BuffevedinputStream adds

behavior in two ways: it
bukfers input to improve

ormante, and also augmcn{-,s
the interface with a new
method readlinel) for veading
ehavacter—based input, a line
at a time.



|

o NG ]
Software Engineering

Decorator Pattern Example

¥ DecoratorPatternDemo
Shape <<interface>>
h
+mainf} : void
+draw(} : void decorates
Y ShapeDecorator asks
+shapa : Shape p&————
implement +5hapeDecorator()
+draw(): void
Circle Rectangle
Timplemen‘-’rs
+drawl() : void +drawf() : void RedshapeDecorator

+shape : Shape

+RedShapeDecorator|)
+draw(}): void
-setRedBorder() :void

https://www.tutorialspoint.com/design pattern/decorator pattern.htm




Ever been to Europe?

« This is an abstraction of the Adapter Pattern

European Wall Qutlet

AC Power Adapter
Standard AC Plug

The US laptop expeets
another intevface.

Suklek erposes

- R
The BuroRERn G okt T

ont iﬁﬂ‘hﬂam \§ —/
The adapter converts one

interface into another.



The Adapter Pattern

Converts the interface of a class into another interface a client expects

Adapter lets classes work together that couldn’t otherwise because of
incompatible interfaces

Interfaces?

* Do you know what a driver 1s?

d New Beginning

.



Adapter Scenario

You have an existing system

You need to work a vendor library into the system

The new vendor interface is different from the last vendor

You really don’t want to change your existing system

Solution?

* Make a class that adapts the new vendor interface into what the system uses

X
== SR
Software Engineering




Adapter Visualized

Your

Existing
System

S b“.."

't mabeh the one 17,
ns 1En 't ".'l""'_'."5 Jr'o

o VE weikhen

TI-.c adapter implements the
“Laface your elasses expect.

Eirn >(

Adapter Vendor
Class

pind talks 4o the vtndor m{.ﬂ'gau

Lo sevvite fouy "'ch“C



How do we do it?

Ex: Driver
« Existing system uses a driver via an interface
 New hardware uses a different interface

« Adapter can adapt differences

Existing system HAS-A OldInterface
Adapter implements OldInterface and HAS-A NewlInterface

Existing system calls OldInterface methods on adapter, adapter
forwards them to NewlInterface implementations



What’s good about this?

Decouple the client from the implemented interface

If we expect the interface to change over time, the adapter
encapsulates that change so that the client doesn’t have to be
modified each time it needs to operate against a different
interface.



\
n L

A h )
Software Enginee

Adapter Pattern Example

<<Interfaces=

|
MediaPlayer AdapterPattern
Demo
|
+play() : void +main() :void |
<<interface=>
AdvancedMediaPiayer Tmplements ienglements uses
+playvic(} :void
+playiipd|)void
T MediaAdapter AudicPlayer
-advancediedia
- ﬁavi;.;ed' -mediaAdapter :
uses ERIICE @ lusest Mediaadapter
VicPlayer MpdPlayer i Dhsisar P
+MediaAdapter]): #play() : void
void
+plawWILC) @ woid +playWiLC() : void +playl) :void
+playhipd() : void +playhipai) @ void

https://www.tutorialspoint.com/design pattern/adapter pattern.htm




The Facade Pattern

Provides a unified interface to a set of interfaces in a subsystem.

The facade defines a higher-level interface that makes the subsystem
easier to use

Employs the principle of least knowledge

A facade is a class or a group of classes hiding internal
implementation/services from the user.

The factory pattern is used when you want to hide the details on
constructing instances.

oW

So&Ware Engineeriqg




Scenario: We need a dialog

* Making a dialog can be a pain
. setting up controls
. providing layout
. many common simple dialogs needed

. applications like common presentation settings

* Solution?
 AppDialogsFacade



AppDialogsFacade

public
public
public
public
public
public
public
public
public
public
public

static
static
static
static
static
static
static
static
static
static

static

void
void
void
void
void
File
File

void

public class AppDialogsFacade {

showAboutDialog (
showExportDialog (
showHelpDialog (
showLanguageDialog (
showMessageDialog (
showOpenDialog (
showSaveDialog (

showStackTraceDialog (

String showTextInputDialog (

String showWelcomeDialog (

ButtonType showYesNoCancelDialog (

oft

R NS

ware




Tutorial

implements

Shape

+drawl() : void

<<Interfaces=

implement

a3

creates

FacadePatternDemo

+main() : void

asks

ShapeMaker

Circle

Rectangle

Square

+draw() : void

sdraw() : void

+drawy) : void

-circle : Shape
-rectangle : Shape
-sguare: Shape

+ShapeMaker({)
+drawCircle{) : void
+drawRectangle() : void
+drawSquare() : void

https://www.tutorialspoint.com/design pattern/facade pattern.htm




Which is which?

 (Converts one interface to another

e Makes an interface simpler
« Doesn’t alter the interface, but adds responsibility

A) Decorator
B) Adapter
C) Facade



The Flyweight Pattern

A “neat hack”
Allows one object to be used to represent many identical instances

— Flyweights must be immutable.

— Flyweights depend on an associated table

*maps identical instances to the single object that represents all of them
Used in processing many large documents
— search engines
— adocument as an array of immutable Strings
— repeated Words would share objects

— just one object for “the” referenced all over the place
euse static Hashtable to store mappings

The flyweight pattern is used to minimize the amount of memory used when you need to create a large
number of similar objects. It accomplishes this by sharing instances.

The name derives from the weight classification in boxing, but refers to the little amount of memory. That
1s, memory = weight.



\
A AL

Flyweight Pattern Example A

<<interfacex> FlyWeightPatternDemo

Shape

+mainf) : void
-gatRandomColor : String
-getRandomX() :int
-getRandomY() :int

+draw(} : void

implements
Circle s
as
%, y, radius sint
-color : String shapeFactory
+Circle()
+5etX() : void £ Creates )
+setY() : void -circlefap : HashMap
:;?;Tﬂ?if‘iﬂ;;md +getCircle(} : Shape

https://www.tutorialspoint.com/design pattern/flyweight pattern.htm




A Component Architecture

« System uses a set of pluggable components

 Each component:
» can be plugged in
* can be updated
» can be replaced

independently of the other components




AppTemplate uses Components

 With Default behavior:

AppFileModule
AppFoolproofModule
AppGUIModule
AppLanguageModule
AppRecentWorkModule

 With Custom behavior:

AppClipboardComponent
AppDataComponent
AppFileComponent
AppWorkspaceComponent

—= X 1
Software Engineering




Behavioral Design Pattern

These design patterns are specifically concerned with communication between
objects.

Increase flexibility in carrying out communication between objects.

https:// www.youtube.com/watch?v=kiTDROYoIgA




The Strategy Pattern

How does it work?
— defines a family of algorithms, encapsulates each one, and makes them interchangeable
— lets the algorithm vary independently from the clients that use them

A class behavior or its algorithm can be changed at run time.

In Strategy pattern, we create objects which represent various strategies and a context object
whose behavior varies as per its strategy object.

The strategy object changes the executing algorithm of the context object.

Classes can be composed (HAS-A) of the interface type
— the interface type is the apparent type
— the actual type can be determined at run-time



Strategy Pattern Example =

StrategyPatter
<zInterface>> nDemo

Strategy

+mainl) : void

+doOperation{) : int

implements T implements aske
q ¥
implements Coritert
Opearationfdd OperationSubstract OperationMultiply
5 -strategy |
Strategy
Lses
+executeStrate
+doQOperation{) : int +doOperation(} : int +doOperation():int g}z int

https://www.youtube.com/watch?v=QKelL46JoDU4
https://www.tutorialspoint.com/design pattern/strategy pattern.htm




Template Method Pattern

Defines the skeleton of an algorithm in a method, deferring some steps
to subclasses.

Lets subclasses redefine certain steps of an algorithm without changing
the algorithm’s structure.

A template for an algorithm

https:// www.youtube.com/watch?v=bPVDEkI1z00




Template Method Pattern

Software Engineering

The template method makes use of the
?ﬁmi'lzivcﬂrcra{:}uhs to i'rh'FIEl'nEh'l: an

algorithm. [t is decoupled from the actual
implementation of these operations.

The AbstraetClass K_\/ \2

tontains the 'i:cm?h":ﬂ

AbstraciClass

—.and abstract versions

primitiveOparationd ()
templatefdethod()] +cccssrmacsrec PR icsssncaas J .
primitiveDparation ()
of the operations used T —
€ OoPCrdTions W ,—-——’__% E primitveOparationZ|)
in the template methed.

ConcreteClass

primitiveOperationt )
-Thtrg, “31 e -nma"ﬂ /’5

-:.3‘51“ a_'; primilivelperation2() .L':E iﬂ;ﬁiﬁﬂblx?l:ﬁﬂhﬁ
Classe e abstract operations,

{:E“:WJ: amp, ‘the EIILT t‘m whith ave talled when the

weglem™ L g

1a?¢ra’r. "'::h:&

":tmfia{:cmxd:hndf} needs them.



Template Method Pattern EL G

Jas S \
Software Engineering

We've thanged the
{-,r_m?\a’czM:{:hndn to
a mew wmethod eall.

intlude

abstract class AbstractClass {

final wvoid templateM=thod() {
primitiveOperationl () ;
primitiveCperation2 () ; We still have our primitive

concretelperation () ; methods; these ave
hook {) ; abstract and implemented

. l':-f tontrete subtlasses.

abstract wvoid primitiveOperationl () ;

abstract void primitiveOperation2 () ; A conevebe n?z'ra-t'im o Al i
abstract elass. This one is detlaved

final woid concreteOperationi() {&'/ : o eant overvide [} A
- " . Final se that subtla
S{ implementation here I sy be waed n Hhe template method

} diveetly, or used by subtlasses
void hook () {1}

.
We tan also have contvete methods that do no'l:hinﬁ l:\lf

-Pl tontrete rnt‘Ehod, but
it does nothing! R/ default; we eall these “hooks.” Subelasses ave Free +o
override these but don't have to. We've going to see

how these avre useful on the next Page.



Wh at’s a hOOk? _Software Eégineéfi%

A type of method

Declared in the abstract class

* only given an empty or default implementation

Gives subclasses the ability to “hook into” the algorithm at various
points, if they wish

» asubclass is also free to ignore the hook.



Template Design Pattern Example

<<ahstract==

extends

Game

sinitialize() :woid
+startPlay) : void
+endPlay() : void
=play() @ void

|

extends

Cricket

Football

uses

TemplatePatternDemo

+initialize() : void

+istartPlay() © void
+endPlay() :void

+play() : void

+initializel] : void
+startPlay() : woid
+endPlay(} :void
+play{) : void

+main{} : void

f

Software Engineering




The Observer Pattern

Defines a one-to-many dependency between objects so that when one
object changes state, all of its dependents are notified and updated
automatically.

Hmm, where have we seen this?
— 1n our GUI

State Manager class maintains application's state
— call methods to change app's state
— app's state change forces update of GUI



TableView
» Used to display spreadsheets and tables

ONCIPARNIR” }

Category Description Start Date End Date Assigned To Completed
I'm Never Gonna Give You Up 2018-02-12 2018-02-14 Rick Astley false
I'm Never Gonna Say Goodbye 2018-02-14 2018-02-16 Rick Astley false

I'm Never Gonna Make You Cry 2018-02-17 2018-02-19 Rick Astley false
| ]|

 How is the table data stored?
* in an Observablelist

» we call this the table’s data model



Editing the table

e To edit the table, you must go through the model:
TableView table = new TableView(..
Observablelist<DataPrototype> model = table.getItems() ;

// Add Data
model .add (...

// Remove Data
model . remove (..

// Change Data
DataPrototype data = model.get(..
data.set(..

// UPDATING THE MODEL (ObservableList) AND/OR THE DATA (DataPrototype)
// WILL AUTOMATICALLY UPDATE THE VIEW (TableView) THANKS TO MVC!



Complex Controls have their own States

« Tables, trees, lists, combo boxes, etc.
— data 1s managed separately from the view

— when state changes, view is updated

e This 1s called MVC
— Model
— View

— Controller

« MVC employs the Observer Pattern



MVC employs the Observer Pattern

Model

— data structure, no visual representation

— notifies views when something interesting happens
View

— visual representation

— views attach themselves to model in order to be notified
Controller

— event handler

— listeners that are attached to view in order to be notified of user interaction (or
otherwise)

MVC Interaction
— controller updates model
— model tells view that data has changed
— view redrawn



Controller

Model View
update (add, etc.)
notify i
return
return

repaint




MV C Architecture e

The model passes its data to the
view for rendering

Model »  View
The view determines which
The controller updates the model events are passed to the
based on events received controller

Controller




\
AL

inee

Observer Design Pattern Example g

OhserverPatternDemo

+main{) : void

asks
L 4
<<abstract=» Observer . uses Subject
+subject : Subject | -observers ¢
+update() : void List<Observer=
T -state : int
L2l +getState() int
extend +5etState() : void
= ttach() : void
BinaryOhserver OctalOhserver HexaObserver i
o + notifyallobservers()
+subject :Subject || +subject :Subject || +subject :subject tyoid
+update() : void +update() : void +update() : void

https://www.tutorialspoint.com/design pattern/observer pattern.htm




%I
|

Command Abstraction

. For many GUISs, a single function may be triggered by many means (e.g.,
keystroke, menu, button, etc...)

— we want to link all similar events to the same listener
. The information concerning the command can be abstracted to a
separate command object
. Common Approach:

- specify a String for each command

. have listener respond to each command differently
— ensure commands are handled in a uniform way
- commands can be specified inside a text file

— The Command Pattern

https://www.voutube.com/watch?v=1INKvgMiPtmY




Command Design Pattern Example

Stock CommandPatternDemo
-name :5iring uses
-quantity :int &
+main() :void
+huy{) : void
+selll) :wvoid
uses
W
Broker
Order <<interface=> -orders :List
uses
5 +takeCrder() : void
+execute() : void splaceOrdersi() : void
i~
implements Implaments
BuyStock sellstock
-stock : Stock -stock : Stock
+BuyStock() +5ell5tock()
+execute(] +axecute()

https://www.tutorialspoint.com/design pattern/command pattern.htm




= O W

Iteration

 What’s the problem?

— you have to perform some operation on a sequence of elements in a
given data structure

e Solution:

— Iterator Pattern a.k.a. Iteration Abstraction

eiterate over a group of objects without revealing details of how the items are
obtained

https://www.youtube.com/watch?v=Pgany;1dVVU




ofgware Englneefing

Iterator

 An Iterator produces proper elements for processing
* Defining an Iterator may be complex
e Using an Iterator must be simple

— they’re all used in the same way

« E.g.update () all elements of List list:

Iterator it;

for (it=list.listIterator(); it.hasNext(); )
it.next () .update() ;

« Makes iteration through elements of a set “higher level”

« Separates the production of elements for iteration from the operation at
cach step in the iteration.



Iterator (cont’d)

 [terator is a design pattern that 1s encountered very often.
— Problem: Mechanism to operate on every element of a set.

— Context: The set is represented in some data structure (list, array,
hashtable, etc.)

— Solution: Provide a way to iterate through every element.

 Common Classes using Iterators in Java API
— StringTokenizer

— Vector, ArrayList, etc ...
— Even I/O streams work like Iterators



; oftware Engineering

Iterator (in Java)

public interface Iterator {
// Returns true if there are more
// elements to iterate over; false
// otherwise
public boolean hasNext() ;

// 1If there are more elements to
// iterate over, returns the next one.
// Modifies the state “this” to record
// that it has returned the element.
// If no elements remain, throw
// NoSuchElementException.
public Object next()

throws NoSuchElementException;

public void remove() ;



Iterator vs. Enumeration

Java provides another interface Enumeration for iterating over a
collection.
Iterator s

— newer (since JDK 1.2)

— has shorter method names
— has a remove() method to remove elements from a collection during iteration

Iterator Enumeration
hasNext () hasMoreElements ()
next () nextElement ()
remove () -

Iterator is recommended for new implementations.



Example Loop controlled by next () |

private Payroll payroll = new Payroll () ;

public void decreasePayroll () ({
Iterator it = payroll.getIterator()
while (it.hasNext()) {
Employee e = (Employee)it.next()
double salary = e.getSalary();
e.setSalary (salary*.9);

}
for (Employee emp : payroll) {



Implementing an Iterator

public class Payroll {
private Employee[] employees;
private int num employees;

// An iterator to loop through all Employees
public Iterator getIterator() {
return new EmplGen () ;

private class EmplGen implements Iterator ({
// see next slide



==l SR
Software Engineering

Implementing an Iterator

private class EmplGen implements Iterator ({

<

private int n = 0; < state of iteration

captured by index n
returns true if there

A

public boolean hasNext() {

return n < num employees; is an element left
} to iterate over

public Object next() throws NoSuchElementException ({
Object obj;
if (n < num employees) {

obj = employees[n]; returns the next
n++; element in the

return obj; iteration sequence

}

else throw new NoSuchElementException
("No More Employees") ;



Iterator Design Pattern Example #ii

<<Interfaces> z<interfacess

Container iterator

+hasMext() : boclean
+next{) : Object

implements T implements I

IteratorPatternDemo NameRepository K Namelterator
uses
| -name ; Stringj ——

+getiterator() : Iterator

+hasNext{) : boolean

+getiterator]) : Ilterator +next() : Object

+main() : void

https://www.tutorialspoint.com/design pattern/iterator pattern.htm




State Pattern

Dynamically change the representation of an object.

— also called Data Abstraction
Users of the object are unaware of the change.

Example:
— Implement a set as a Vector if the number of elements 1s small

— Implement a set as a Hashtable if the number of elements is large

State pattern 1s used only on mutable objects.



Example: Set

public class Set {
private Object elements;

public boolean isIn(Object member) {
if (elements instanceof Vector)
// search using Vector methods
else
// search using Hashtable methods

public void add (Object member) {
if (elements instanceof Vector)
// add using Vector methods
else
// add using Hashtable methods

I \
Software

[

o AL
Engineering




N
X (W

Using the state pattern: SetRep g

public interface SetRep {
public void add(object member) ;
public boolean isIn (Object member) ;
public int size();
public void remove() ;

public class SmallSet implements SetRep {
private Vector set;
public void add(Object element) { ... }
public void remove() { ... }

public class LargeSet implements SetRep {
private Hashtable set;
public void add (Object element) { ... }
public void remove() { ... }



TR A L
SIS SR .

Using the state pattern: a new Set Ei

public class Set {
private SetRep rep;
private int threshold;

public void add (Object element) ({
if (rep.size() == threshold)
rep = new LargeSet (rep.elements());
rep.add (element) ;

public void remove (Object element) {
rep.remove (elem) ;
if (rep.size == threshold)
rep = new SmallSet (rep.elements());



State Pattern Example

StatePaiternDemo
+main() : void
asks
W
«<interfacesx State uses Context
-state : State
+doAction() : void
. T +Context() : void
jnplermanits +gestate() : int
implements +setState) :void
StartState StopState
+doAction() : void +doaction]) : void

https://www.tutorialspoint.com/design pattern/state pattern.htm




There are others too

Chain of Responsibility
Composite

Interpreter

Mediator

Memento

Proxy

Visitor



