

 Follow instructions for local installation at:

 https://reactjs.org/tutorial/tutorial.html

 Create React App locally:
 npm install -g create-react-app

 npx create-react-app

 Follow instructions for creating a TicTacToe game frame

2

 Taken from: https://reactjs.org/tutorial/tutorial.html

 React is a declarative, efficient, and flexible JavaScript library for building
user interfaces.

 It lets you compose complex UIs from small and isolated pieces of code called
“components”.

3

 Component tell React what we want to see on the screen

 A component takes in parameters called props

 Render method returns a description of what you want to see on the screen

 Render returns a React element that describes what to render

 React developers use JSX for writing structures to be rendered

 JSX is an XML/HTML-like syntax that allows us to put HTML into JavaScript

 React components can be composed and rendered as required

 Each React component is encapsulated and can operate independently

 This allows building complex UI4s from simple components

4

 Change the renderSquare method to pass a prop called value to the Square:

 Change Square’s render method to show the square value:

5

 Refresh the browser to see the number in each square

 We passed a prop from a parent Board component to a
Child square component

 Information flows in React apps by passing props from
parents to children

6

 Getting an alert

 Note the use of arrow function

7

 State of a component is to be initialized in a constructor of a component

 State should be considered as private to a React component

 Add a constructor to the Square class to initialize state

 Following JavaScript guidelines, all React component classes with a
constructor should have a super(props) call

8

 Use this.setState from an onClickhandler in the render method for changing
state of a square

 Calling a setState in a component will automatically update the child
components inside it

9

 To determine winner, the value of each of the 9 squares need to be in one
location

 Best approach is to store game’s state in the parent Board component

 Board tells each square what to display by passing a prop

 Ass a constructor to Board and set initial values with 9 nulls

 Modify renderSquare method to read value from the board’s state

 Pass down a function which will get called when a Square is clicked

11

 Board class passes down two props to Square: value and onClick

 Square doesn’t need to keep track of state now, so we can delete square state

 Also, delete square constructor and change render to the following:

12

13

 We have not defined the handleClick() method yet, so our code crashes

 Add handleClick to the Board class

 The Square component receive values from Board component

 Square components are now controlled components
14

 We used the .slice() operator to create a copy of the squares array instead of
modifying the existing array

 Mutation refers to changing data directly, other approach is replacing the
data with a new copy

 Immutability allows us to implement ‘time travel’ – useful for undo and redo
operations

 Detecting changes in the immutable objects is easier

15

16

 React classes which contain only render method and don’t have own state
could be converted to function components

 Function takes props as input and returns what should be rendered

 Replace the Square class with a function

17

 First move is always X
 Add xIsNext: true, to the Board state in it’s constructor

 We will flip xIsNext to True or False depending on who is next: X or O

 Change handleClick function to change the value of squares and xIsNext
depending on the turn

 Change status text in Board’s render to display player with next turn
 const status = 'Next player: ' + (this.state.xIsNext ? 'X' : 'O’);

18

19

 Call calculateWinner(squares) in the Board’s render function

 If a player has won, display text such as “Winner: X” or “Winner: O”

20

 Change the Board’s handleClick function to return early by ignoring a click if
someone has won the game or if a Square is already filled

21

 Homework

22

 Relational Databases
 Example: Microsoft SQL Server, Oracle DB, DB2

 Used in large enterprise scenarios

 Non-relational databases
 Example: MongoDB, Cassandra

 Four categories: Key-value stores, wide-column stores, Document stores and graph
stores

Some of these slides taken from: https://www.pass.org/DownloadFile.aspx?File=0141eebe 23

 NoSQL is a class of database management system identified by its non-
adherence to the widely used relational database management system
(RDBMS) model with its structured query language (SQL).

 NOSQL has evolved to mean “Not Only” SQL

 NOSQL has become prominent with the advent of web scale data and systems
created by Google, Facebook, Amazon, Twitter and others to manage data for
which SQL was not the best fit.

24

 Data Stored in tables

 Tables contain some number of columns, each of a type

 A schema describes the columns each table can have

 Every table’s data is stored in one or more rows

 Each row contains a value for every column in that table

 Rows aren’t kept in any particular order

25

 Anything can be stored as a value, as long as each value is associated with a
key or a name

 Key-value stores offer very high speed via the least complicated data model

 The basic data structure is a dictionary or map. You can store a value, such
as an integer, string, a JSON structure, or an array, along with a key used to
reference that value.

26

 Also called column stores

 Stores data using a column oriented
model.

 The store contains the column families
(like relational tables) which contain
rows, which contain columns.

 Each column is contained to its row. It
doesn’t span all rows like in a relational
database. Each column contains a
name/value pair, along with a
timestamp.

27

 Document stores contain data objects that are inherently hierarchical, tree-
like structures (JSON or XML).

 Documents in a document store are not required to adhere to a standard
schema.

28

 Uses graphic structures for semantic
queries with nodes, edges and
properties to represent and store data.

 A graph database is essentially a
collection of nodes and edges. Each
node represents an entity (such as a
person or business) and each edge
represents a connection or relationship
between two nodes.

 Graph databases are well-suited for
analyzing interconnections.

 There has been a lot of interest in
using graph databases to mine data
from social media.

29

 Key-value stores: [Redis] For cache, queues, fit-in memory, rapidly changing
data, store blob data. (Shopping cart, Session Data, Stock Prices). Fastest
performance

 Wide-column stores: [Cassandra] Real-time querying of random (non-
sequential) data, huge number of writes, sensors. (Web analytics, real-time
data analytics, time series analytics): Internet scale

 Document stores: [MongoDB] Flexible schemas, dynamics queries, defined
indexes, good performance on big DB: (Order data, customer data, log data,
chat sessions, tweets, ratings, comments). Fastest development

 Graph database: [Neo4j] Graph-style data, social network, master data
management (fraud detection, graph search, gene sequencing)

30

RDBMS MongoDB

Database Database

Table Collection

Tuple/Row Document

column Field

Table Join Embedded Documents

Primary Key Primary Key (Default key _id provided by mongodb
itself)

SQL query language Document-based query language

Database Server and Client

Mysqld/Oracle mongod

mysql/sqlplus mongo

31

 https://www.mongodb.com/download-center/community

 Download and install

 Create data folder which will be used as default database storage path for
MongoDB:
 C:\pravinp\SUNYK\Spring2019\Courses\CSE308\project\mongodb\data

 Start Mongodb using following command:
 "C:\Program Files\MongoDB\Server\4.0\bin\mongod.exe" –dbpath

“C:\pravinp\SUNYK\Spring2019\Courses\CSE308\project\mongodb\data”

Taken from https://geekflare.com/getting-started-mongodb/ 32

 MongoDB stores the data in the form of JSON documents.

 A group of such documentation is collectively known as a collection in
MongoDB.

 A collection is analogous to a table in a relational database.

 A document is analogous to a record in a relational database.

 Execute following command from MongoDB home directory to create a
database:
 C:\Program Files\MongoDB\Server\4.0\bin> mongo tutorial

 Create a collection with following command:
 > db.createCollection('firstCollection');

33

 Insertion of the first JSON document into the firstCollection
 > db.firstCollection.insertOne({name:'Abhishek',skill:'MongoDB’});

 Find above document from the collection
 db.firstCollection.find(); //Fetches all available documents

 Insert another document in the collection
 > db.firstCollection.insertOne({name:'GeekFlare',skill:'Java,MongoDB,NodeJS’});

 Try following commands:
 db.firstCollection.find();

 db.firstCollection.find({name:'Abhishek'}); //using filter

 db.firstCollection.find({skill:/.*MongoDB.*/}); //filter using regex

 db.firstCollection.find({skill:/.*Java.*/}); //filter using RegEx

34

 Operators such $or, $and as well as $not could be used for query operations

 E.g. get the list of documents where name attribute contains Abhishek or
skill contains Java.
 db.firstCollection.find({$or: [{name:'Abhishek'},{skill:/.*Java.*/}]});

35

 Create another collection
 db.createCollection('studentmarks’);

 Insert a document in studentmarks collection
 db.studentmarks.insertMany([{name:'A',marks:20},{name:'B',marks:25},{name:'C',m

arks:22},{name:'D',marks:30}]);

 Use operators such as greater than ($gt), less than ($lt) or not equal to ($ne)
 db.studentmarks.find({marks:{$gt:22}});

36

Operator Use Example

$eq Check if the value is equal {marks:{$eq:20}}

$lt Check if value is less than {marks: {$lt:20}}

$gte Check if value is greater than or equal to {marks:{$gte:22}}

$lte Check if value is less thank or equal to {marks:{$lte:22}}

$ne Check if value is not equal to {marks:{$ne:22}}

$in
Check if value is equal to either of the values
from the array

{marks:{$in:[20,22]}}

$nin
Check if value is not equal to any value from the
array

{marks:{$nin:[22,25]}}

37

38

 A user logins using Facebook

 A map pops up showing user's current location

 User is able to create/edit/delete a basic contact profile by clicking user
account button

 React Native location tracking:
 https://medium.com/quick-code/react-native-location-tracking-14ab2c9e2db8

 Facebook OAuth in React Native
 https://alexanderpaterson.com/posts/add-social-authentication-to-a-react-native-

application

 Building Spring Boot, MongoDB and React.js CRUD Web Application
 https://www.djamware.com/post/5ab6397c80aca714d19d5b9c/building-spring-

boot-mongodb-and-reactjs-crud-web-application

39

