
SOFTWARE ENGINEERING

Introduction to
Unified Modeling Language

(UML)

Heavily based on UML Slides made available at following locations:
https://www.cs.drexel.edu/~spiros/teaching/CS575/slides/uml.ppt

https://www.cs.ucf.edu/~turgut/COURSES/EEL5881_SEI_Fall07/UML_Lecture.ppt

WHAT IS UML AND WHY WE USE UML?

UML → “Unified Modeling Language”

Modeling: Describing a software system at a high
level of abstraction

Unified: UML has become a world standard

Object Management Group (OMG): www.omg.org

It is a industry-standard graphical language for specifying,
visualizing, constructing, and documenting the artifacts of
software systems

The UML uses mostly graphical notations to express the OO
analysis and design of software projects.

Simplifies the complex process of software design

UML: UNIFIED MODELING LANGUAGE

Developed by the “Three Amigos”: Grady Booch, Jim Rumbaugh,
Ivar Jacobson in 1994-85 at Rational Software
 Each had their own development methodology

 More or less emphasis on notation and process

UML is a notation and a process
 Diagrams and notation from UML 1.3 Definition (http://www.rational.com)

DIAGRAMS
Class diagrams: Represent static structure

Use case diagrams: Sequence of actions a system performs to yield an
observable result to an actor

Sequence diagrams: Show how groups of objects interact in some behavior

State diagrams: Describe behavior of system by describing states of an object

Activity diagrams: Activity diagram is a flowchart to represent the flow from
one activity to another activity

Collaboration diagrams: Show the message flow between objects in an OO
application, and also imply the basic associations (relationships) between
classes

CLASSES

ClassName

attributes

operations

A class is a description of a set of
objects that share the same attributes,
operations, relationships, and semantics.

Graphically, a class is rendered as a
rectangle, usually including its name,
attributes, and operations in separate,
designated compartments.

CLASS NAMES

ClassName

attributes

operations

The name of the class is the only required tag in the
graphical representation of a class. It always appears in
the top-most compartment.

CLASS ATTRIBUTES

Person

name : String
address : Address
birthdate : Date
ssn : Id

An attribute is a named property of a
class that describes the object being modeled.
In the class diagram, attributes appear in
the second compartment just below the
name-compartment.

CLASS ATTRIBUTES (CONT’D)

Person

name : String
address : Address
birthdate : Date
/ age : Date
ssn : Id

Attributes are usually listed in the form:

attributeName : Type

A derived attribute is one that can be
computed from other attributes, but
doesn’t actually exist. For example,
a Person’s age can be computed from
his birth date. A derived attribute is
designated by a preceding ‘/’ as in:

/ age : Date

CLASS ATTRIBUTES (CONT’D)

Person

+ name : String
address : Address
birthdate : Date
/ age : Date
- ssn : Id

Attributes can be:
+ public
protected
- private
/ derived

CLASS OPERATIONS

Person

name : String
address : Address
birthdate : Date
ssn : Id

eat
sleep
work
play

Operations describe the class behavior
and appear in the third compartment.

CLASS OPERATIONS (CONT’D)

PhoneBook

newEntry (n : Name, a : Address, p : PhoneNumber, d : Description)
getPhone (n : Name, a : Address) : PhoneNumber

You can specify an operation by stating its signature: listing the name, type, and default
value of all parameters, and, in the case of functions, a return type.

DEPICTING CLASSES

Person

name : String
birthdate : Date
ssn : Id

eat()
sleep()
work()
play()

When drawing a class, you needn’t show attributes and operation in every diagram.

Person

Person

name
address

birthdate

Person

eat
play

Person

CLASS RESPONSIBILITIES

A class may also include its responsibilities in a class diagram.

A responsibility is a contract or obligation of a class to perform a particular service.

SmokeAlarm

Responsibilities

-- sound alert and notify guard station
when smoke is detected.

-- indicate battery state

RELATIONSHIPS

In UML, object interconnections (logical or physical), are
modeled as relationships.

There are three kinds of relationships in UML:

• dependencies

• generalizations

• associations

DEPENDENCY RELATIONSHIPS

CourseSchedule

add(c : Course)
remove(c : Course)

Course

A dependency indicates a semantic relationship between two or
more elements. The dependency from CourseSchedule to Course exists because Course
is used in both the add and remove operations of CourseSchedule.

GENERALIZATION RELATIONSHIPS

Person A generalization connects a subclass
to its superclass. It denotes an
inheritance of attributes and behavior
from the superclass to the subclass and
indicates a specialization in the subclass
of the more general superclass.

Student

Subtype2

Supertype

Subtype1

GENERALIZATION RELATIONSHIPS (CONT’D)

Student

UML permits a class to inherit from multiple superclasses, although some programming
languages (e.g., Java) do not permit multiple inheritance.

TeachingAssistant

Employee

ASSOCIATION RELATIONSHIPS

If two classes in a model need to communicate with each other, there must be link
between them.

An association denotes that link.

InstructorStudent

ASSOCIATION RELATIONSHIPS (CONT’D)

We can indicate the multiplicity of an association by adding multiplicity adornments to
the line denoting the association.

The example indicates that a Student has one or more Instructors:

InstructorStudent
1..*

ASSOCIATION RELATIONSHIPS (CONT’D)

The example indicates that every Instructor has one or more Students:

InstructorStudent
1..*

ASSOCIATION: MULTIPLICITY AND ROLES

University Person

1

0..1

*

*

Multiplicity

Symbol Meaning

1 One and only one

0..1 Zero or one

M..N From M to N (natural language)

* From zero to any positive integer

0..* From zero to any positive integer

1..* From one to any positive integer

teacheremployer

Role

Role

“A given university groups many people;
some act as students, others as teachers.
A given student belongs to a single
university; a given teacher may or may not
be working for the university at a particular
time.”

student

ASSOCIATION: MODEL TO IMPLEMENTATION

Class Student {

Course enrolls[4];

}

Class Course {

Student have[];

}

Student Course
enrollshas

* 4

ASSOCIATION RELATIONSHIPS (CONT’D)

We can also indicate the behavior of an object in an association (i.e., the role of an
object) using rolenames.

InstructorStudent
1..*1..*

learns fromteaches

ASSOCIATION RELATIONSHIPS (CONT’D)

We can also name the association.

TeamStudent
membership

1..* 1..*

ASSOCIATION RELATIONSHIPS (CONT’D)

We can specify dual associations.

TeamStudent

member of

1..*

president of1 1..*

1..*

ASSOCIATION RELATIONSHIPS (CONT’D)

We can constrain the association relationship by defining the navigability of the
association. Here, a Router object requests services from a DNS object by sending
messages to (invoking the operations of) the server. The direction of the association
indicates that the server has no knowledge of the Router.

Router DomainNameServer

ASSOCIATION RELATIONSHIPS (CONT’D)

Associations can also be objects themselves, called link classes or an association classes.

WarrantyProduct

Registration

modelNumber
serialNumber
warrentyCode

ASSOCIATION RELATIONSHIPS (CONT’D)

A class can have a self association.

LinkedListNode

next

previous

ASSOCIATION RELATIONSHIPS (CONT’D)

We can model objects that contain other objects by way of special associations
called aggregations and compositions.

An aggregation specifies a whole-part relationship between an aggregate (a
whole) and a constituent part, where the part can exist independently from the
aggregate. Aggregations are denoted by a hollow-diamond adornment on the
association.

Car

Engine

Transmission

OO RELATIONSHIPS: AGGREGATION

Class C

Class E1 Class E2

AGGREGATION

Container Class

Containee Classes

Bag

Apples Milk

Example

Aggregation:
expresses a relationship among instances of related
classes. It is a specific kind of Container-
Containee relationship.

express a more informal relationship than
composition expresses.

Aggregation is appropriate when Container and
Containees have no special access privileges to
each other.

ASSOCIATION RELATIONSHIPS (CONT’D)

A composition indicates a strong ownership and coincident lifetime of parts by the
whole (i.e., they live and die as a whole). Compositions are denoted by a filled-
diamond adornment on the association.

Window

Scrollbar

Titlebar

Menu

1

1

1

1

1

1 .. *

OO Relationships: Composition

Class W

Class P1 Class P2

Association
Models the part–whole relationship

Composition
Also models the part–whole relationship but, in
addition, Every part may belong to only one
whole, and If the whole is deleted, so are the
parts

Example:
A number of different chess boards: Each square
belongs to only one board. If a chess board is
thrown away, all 64 squares on that board go as well.

Whole Class

Part Classes

Example

Figure 16.7

The McGraw-Hill Companies, 2005

AGGREGATION VS. COMPOSITION

Composition is really a strong form of association
components have only one owner
components cannot exist independent of their owner
components live or die with their owner
e.g. Each car has an engine that can not be shared with other cars.

Aggregations
may form "part of" the association, but may not be essential to it. They
may also exist independent of the aggregate. e.g. Apples may exist
independent of the bag.

INTERFACES
An interface is a named set of operations that
specifies the behavior of objects without showing
their inner structure. It can be rendered in the model
by a one- or two-compartment rectangle, with the
stereotype <<interface>> above the interface
name.

<<interface>>
ControlPanel

INTERFACE SERVICES

Interfaces do not get instantiated. They have
no attributes or state. Rather, they specify the
services offered by a related class.

<<interface>>
ControlPanel

getChoices : Choice[]
makeChoice (c : Choice)
getSelection : Selection

INTERFACE REALIZATION RELATIONSHIP

<<interface>>
ControlPanel

VendingMachine

A realization relationship connects a class
with an interface that supplies its
behavioral specification. It is rendered
by a dashed line with a hollow triangle
towards the specifier.specifier

implementation

PARAMETERIZED CLASS

LinkedList

T

T

1 .. *

A parameterized class or template defines a
family of potential elements.

To use it, the parameter must be bound.

A template is rendered by a small dashed
rectangle superimposed on the upper-right
corner of the class rectangle. The dashed
rectangle contains a list of formal parameters
for the class.

PARAMETERIZED CLASS (CONT’D)

LinkedList

T

T

1..*

Binding is done with the <<bind>> stereotype
and a parameter to supply to the template.
These are adornments to the dashed arrow
denoting the realization relationship.

Here we create a linked-list of names for the
Dean’s List.

DeansList

<<bind>>(Name
)

ENUMERATION

<<enumeration>>
Boolean

false
true

An enumeration is a user-defined data type that
consists of a name and an ordered list of
enumeration literals.

EXCEPTIONS

<<exception>>
KeyException

<<exception>>
SQLException

<<exception>>
Exception

getMessage()
printStackTrace()

Exceptions can be modeled just like
any other class.

Notice the <<exception>>
stereotype in the name compartment.

GOOD PRACTICE: CRC CARD

Class Responsibility Collaborator

easy to describe how classes work by moving cards around; allows to
quickly consider alternatives.

CLASS DIAGRAM

[from UML Distilled Third Edition]

PACKAGES

Compiler

A package is a container-like element for
organizing other elements into groups.

A package can contain classes and other packages
and diagrams.

Packages can be used to provide controlled access
between classes in different packages.

PACKAGES (CONT’D)
Classes in the FrontEnd package and classes in the BackEnd package cannot access
each other in this diagram.

FrontEnd BackEnd

Compiler

PACKAGES (CONT’D)

Classes in the BackEnd package now have access to the classes in the FrontEnd
package.

FrontEnd BackEnd

Compiler

PACKAGES (CONT’D)

JavaCompiler

We can model generalizations and dependencies
between packages.

Compiler

Java

COMPONENT DIAGRAM
Component diagrams are one of the two kinds of diagrams found in modeling the
physical aspects of an object-oriented system. They show the organization and
dependencies between a set of components.

Use component diagrams to model the static implementation view of a system. This
involves modeling the physical things that reside on a node, such as executables,
libraries, tables, files, and documents.

- The UML User Guide, Booch et. al., 1999

COMPONENT DIAGRAM
collision.dll

driver.dll
version = 8.1.3.2

path.dll

IDrive

ISelfTest

Here’s an example of a component model of
an executable release.

[Booch,99]

COMPONENT DIAGRAM

“parent” “parent”

signal.h
version = 3.5

signal.h
version = 4.0

signal.h
version = 4.1

signal.cpp
version = 4.1interp.cpp

irq.h device.cpp

Modeling source code.

[Booch, 99]

DEPLOYMENT DIAGRAM

Deployment diagrams are one of the two kinds of diagrams found in modeling
the physical aspects of an object-oriented system. They show the configuration of
run-time processing nodes and the components that live on them.

Use deployment diagrams to model the static deployment view of a system. This
involves modeling the topology of the hardware on which the system executes.

- The UML User Guide, [Booch,99]

DEPLOYMENT DIAGRAM
A component is a physical unit of implementation with well-defined interfaces that is
intended to be used as a replaceable part of a system. Well designed components
do not depend directly on other components, but rather on interfaces that components
support.

- The UML Reference Manual, [Rumbaugh,99]

spell-check
Dictionary

synonyms

component

interfaces

DEPLOYMENT DIAGRAM

UpdateTransactions

Account

[Rumbaugh,99]
ATM-GUI

<<database>
>

component

realization dependency

interface

usage dependency

stereotyped
component

DEPLOYMENT DIAGRAM

reservations

<<database>>

meetingsDB

:Scheduler

server:HostMachine

clientMachine:PC

:Planner

Deployment diagram of a
client-server system.

[Rumbaugh,99]
<<direct channel>>

USE CASE
“A use case specifies the behavior of a system or a part of a system, and is a
description of a set of sequences of actions, including variants, that a system performs
to yield an observable result of value to an actor.”

- The UML User Guide, [Booch,99]

“An actor is an idealization of an external person, process, or thing interacting with a
system, subsystem, or class. An actor characterizes the interactions that outside users
may have with the system.”

- The UML Reference Manual, [Rumbaugh,99]

USE CASE (CONT’D)

Register for Courses

A use case is rendered as an ellipse in a use
case diagram. A use case is always labeled
with its name.

USE CASE (CONT’D)

An actor is rendered as a stick figure in a use
case diagram. Each actor participates in one
or more use cases.

Student

USE CASE (CONT’D)

Student Person

Actors can participate in a generalization relation with other actors.

USE CASE (CONT’D)

Register for Courses

Actors may be connected to use cases

only by associations.

Student

USE CASE (CONT’D)

Student

Billing System

Registrar

Register for Courses

Here we have a Student interacting with the Registrar and the

Billing System via a “Register for Courses” use case.

USE-CASE DIAGRAMS

Extend: a dotted line labeled <<extend>> with an arrow toward
the base case. The extending use case may add behavior to the
base use case. The base class declares “extension points”.

<<extend>>

Include: a dotted line labeled <<include>> beginning at base
use case and ending with an arrows pointing to the include use
case. The include relationship occurs when a chunk of
behavior is similar across more than one use case. Use
“include” instead of copying the description of that behavior.

<<include>>

USE-CASE DIAGRAMS

USE-CASE DIAGRAMS
Both Make Appointment and
Request Medication include
Check Patient Record as a
subtask (include)

The extension point is
written inside the base case
Pay bill; the extending class
Defer payment adds the
behavior of this extension
point. (extend)

Pay Bill is a parent use case
and Bill Insurance is the
child use case.
(generalization)

STATE MACHINE

“The state machine view describes the dynamic behavior of objects over time by
modeling the lifecycles of objects of each class. Each object is treated as an isolated
entity that communicates with the rest of the world by detecting events and responding
to them. Events represent the kinds of changes that objects can detect... Anything that
can affect an object can be characterized as an event.”

- The UML Reference Manual, [Rumbaugh,99]

STATE MACHINE
An object must be in some specific state at any given time during its lifecycle. An object
transitions from one state to another as the result of some event that affects it. You may
create a state diagram for any class, collaboration, operation, or use case in a UML
model .

There can be only one start state in a state diagram, but there may be many
intermediate and final states.

STATE MACHINE
start state final state

simple state

concurrent composite state

sequential composite state

STATE DIAGRAMS (BILLING EXAMPLE)

State Diagrams show the sequences of states an object goes through
during its life cycle in response to stimuli, together with its responses and
actions; an abstraction of all possible behaviors.

Unpaid

Start End

Paid
Invoice created paying Invoice destroying

STATE DIAGRAMS (TRAFFIC LIGHT EXAMPLE)

Yellow

Red

Green

Traffic Light
State

Transition

Event

Start

STATE MACHINE – COURSE SCHEDULING

selecting

verifying

downloading

checking schedule

download course offerings

make a course selection

verify selection

check schedule

select another course

make a different selection

unscheduled

scheduled

sign schedule

SEQUENCE DIAGRAM
A sequence diagram is an interaction diagram that emphasizes the time ordering of
messages. It shows a set of objects and the messages sent and received by those
objects.

Graphically, a sequence diagram is a table that shows objects arranged along the X
axis and messages, ordered in increasing time, along the Y axis.

- The UML User Guide, [Booch,99]

SEQUENCE DIAGRAM

An object in a sequence diagram is rendered

as a box with a dashed line descending from it.

The line is called the object lifeline, and it

represents the existence of an object over a

period of time.

an Order Line

SEQUENCE DIAGRAM

an Order Line a Stock Item

[check = “true”]
remove()

check()

Messages are rendered as horizontal

arrows being passed from object to

object as time advances down the

object lifelines. Conditions (such as

[check = “true”]) indicate when a

message gets passed.

SEQUENCE DIAGRAM

an Order Line a Stock Item

[check = “true”]
remove()

check() Notice that the bottom arrow is different. The arrow
head is not solid, and there is no accompanying
message.

This arrow indicates a return from a previous message,
not a new message.

SEQUENCE DIAGRAM
an Order a Order Line

* prepare() An iteration marker, such as * (as shown), or *[i
= 1..n] , indicates that a message will be
repeated as indicated.

Iteration
marker

SEQUENCE DIAGRAM(MAKE A PHONE CALL)

Caller Phone Recipient

Picks up

Dial tone

Dial

Ring notification Ring

Picks up

Hello

SEQUENCE DIAGRAM:OBJECT INTERACTION

Self-Call: A message that an
Object sends to itself.

Condition: indicates when a
message is sent. The message is
sent only if the condition is true.

Iteration

Condition

A B

Synchronous

Asynchronous

Transmission
delayed

Self-Call

[condition] remove()

*[for each] remove()

SEQUENCE DIAGRAMS – OBJECT LIFE SPANS

Creation
 Create message

 Object life starts at that point

Activation
 Symbolized by rectangular stripes

 Place on the lifeline where object is
activated.

 Rectangle also denotes when object is
deactivated.

Deletion
 Placing an ‘X’ on lifeline

 Object’s life ends at that point

Activation bar

A

B
Create

X
Deletion

Return

Lifeline

SEQUENCE DIAGRAM

User Catalog Reservations

1: look up ()

2: title data ()

3: [not available] reserve title ()

4 : title returned ()

5: hold title ()

5 : title available ()

6 : borrow title ()

6 : remove reservation ()

•Sequence diagrams demonstrate
the behavior of objects in a use case
by describing the objects and the
messages they pass.

•The horizontal dimension shows the
objects participating in the interaction.

•The vertical arrangement of
messages indicates their order.

•The labels may contain the seq. # to
indicate concurrency.

Message

an Order Entry
window

an Order an Order Line a Stock Item

A Reorder
Item

A Delivery
Item

new

[check = “true”]
new

[needsToReorder = “true”]

needsToReorder()

[check = “true”]
remove()

check()

* prepare()

prepare()

Object

Message

Iteration

Return

Creation

Condition

Self-Delegation

[Fowler,97]

COLLABORATION DIAGRAM

A collaboration diagram emphasizes the relationship of the objects that participate in
an interaction. Unlike a sequence diagram, you don’t have to show the lifeline of an
object explicitly in a collaboration diagram. The sequence of events are indicated by
sequence numbers preceding messages.

Object identifiers are of the form objectName : className, and either the objectName
or the className can be omitted, and the placement of the colon indicates either an
objectName: , or a :className.

COLLABORATION DIAGRAM
: Order Entry Window

: Order

: Order Line

:Delivery Item

: Stock Item

:Reorder Item

1: prepare()

2*: prepare() 3: check()
4: [check == true] remove()

6: new7: [check == true] new

5: needToReorder()

[Fowler,97]

Self-Delegation

Object

Message

Sequence Number

INTERACTION DIAGRAMS: COLLABORATION DIAGRAMS

User

Catalog

Reservations

start

1: look up
2: title data

3 : [not available] reserve title

4 : title returned

5 : hold title

6 : borrow title

6: remove reservation

5: title available

 Both a collaboration diagram and a sequence diagram derive from the same information
in the UML’s metamodel, so you can take a diagram in one form and convert it into the
other. They are semantically equivalent.

Use a sequence diagram when the transfer of information is the focus of attention

Use a collaboration diagram when concentrating on the classes

ACTIVITY DIAGRAM

An activity diagram is essentially a flowchart, showing the flow of control from
activity to activity.

Use activity diagrams to specify, construct, and document the dynamics of a
society of objects, or to model the flow of control of an operation. Whereas
interaction diagrams emphasize the flow of control from object to object, activity
diagrams emphasize the flow of control from activity to activity. An activity is an
ongoing non-atomic execution within a state machine.

- The UML User Guide, [Booch,99]

[Fowler,97]Receive
Order

Authorize
Payment

Check
Line
Item

Cancel
Order

Assign to
Order

Reorder
Item

Dispatch
Order

[failed]

[succeeded] [in stock]

*
for each line
item on order

[need to
reorder]

[stock assigned to
all line items and

payment authorized]

Synchronization Condition

Multiple Trigger

SOME REFERENCES
https://www.cs.drexel.edu/~spiros/teaching/CS575/slides/uml.ppt

https://www.cs.ucf.edu/~turgut/COURSES/EEL5881_SEI_Fall07/UML_Lecture.ppt

Booch, Grady, James Rumbaugh, Ivar Jacobson,

The Unified Modeling Language User Guide, Addison Wesley, 1999

Rumbaugh, James, Ivar Jacobson, Grady Booch, The Unified

Modeling Language Reference Manual, Addison Wesley, 1999

Jacobson, Ivar, Grady Booch, James Rumbaugh, The Unified
Software Development Process, Addison Wesley, 1999

Fowler, Martin, Kendall Scott, UML Distilled (Applying the Standard Object Modeling
Language), Addison Wesley, 1997.

