
Software Testing

Some of the slides taken from:
1) Software Engineering, Ian Sommerville, 9th Edition
2) Prof. Richard McKenna’s lecture on Test Driven Development at SBU

Topics covered

Why do software projects fail?

 Development testing

 Test-driven development

 Release testing

 User testing

Software Testing 25/13/2019

Reading Assignment

Why Software Fails:
https://spectrum.ieee.org/comput
ing/software/why-software-fails

Software Hall of Shame ->

WHY DO PROJECTS FAIL SO OFTEN?
Among the most common factors:

• Unrealistic or unarticulated project goals

• Inaccurate estimates of needed resources

• Badly defined system requirements

• Poor reporting of the project’s status

• Unmanaged risks

• Poor communication among customers, developers, and users

• Use of immature technology

• Inability to handle the project’s complexity

• Sloppy development practices

• Poor project management

• Stakeholder politics

• Commercial pressures

Man-hours

 Labor is sometimes measured in man-hours, man-
months, or man-years.

 Example: Doom3 took 5 years and more than
100 man-years of labor to develop

• Company Spokesman: "It will be ready when it's
done"

 Why not double the size of the team and halve
the lead time (concept date to release date)?

5

Man-hours: The Mythical Man-Month

 Assume that a software program might take one expert
programmer a year to develop = 12 man-months

 Market pressures might be such that we want to get the program
finished in a month, rather than a year

 1 programmer * 12 months = 12 programmers * 1 month?
 When you throw additional programmers at a project that is late, you are

likely to make it more late!
 Remove promised-but-not-yet-completed features, rather than multiplying

workers bees.
 Also, at least one team member must have detailed knowledge of the entire

system (all the modules).

6

Program testing

 Testing is intended to show that a program does what it is
intended to do and to discover program defects before it is put
into use.

 When you test software, you execute a program using
artificial data.

 You check the results of the test run for errors, anomalies or
information about the program’s non-functional attributes.

 Can reveal the presence of errors NOT their
absence.

 Testing is part of a more general verification and validation
process, which also includes static validation techniques.

Software Testing 75/13/2019

Testing process goals

 Validation testing

 To demonstrate to the developer and the system customer that the software
meets its requirements

 A successful test shows that the system operates as intended.

 You expect the system to perform correctly using a given set of test cases that
reflect the system’s expected use.

 Defect testing

 To discover faults or defects in the software where its behaviour is incorrect or
not in conformance with its specification

 A successful test is a test that makes the system perform incorrectly and so
exposes a defect in the system.

 The test cases are designed to expose defects.

 The test cases in defect testing can be deliberately obscure and need not reflect
how the system is normally used.

Software Testing 85/13/2019

An input-output model of program testing

Software Testing 95/13/2019

Verification vs validation

 Verification:
"Are we building the product right”.

 The software should conform to its specification.

 Validation:
"Are we building the right product”.

 The software should do what the user really requires.

Software Testing 105/13/2019

Inspections and testing

 Software inspections is concerned with analysis of
the static system representation to discover problems
(static verification)

 May be supplement by tool-based document and code
analysis.

 Software testing is concerned with exercising and
observing product behaviour (dynamic verification)

 The system is executed with test data and its operational
behaviour is observed.

Software Testing 115/13/2019

Inspections and testing

Software Testing 125/13/2019

Software inspections

 These involve people examining the source
representation with the aim of discovering anomalies and
defects.

 Inspections not require execution of a system so may be
used before implementation.

 They may be applied to any representation of the system
(requirements, design,configuration data, test data, etc.).

 They have been shown to be an effective technique for
discovering program errors.

Software Testing 135/13/2019

Inspections and testing

 Inspections and testing are complementary and not
opposing verification techniques.

 Both should be used during the V & V process.

 Inspections can check conformance with a specification
but not conformance with the customer’s real
requirements.

 Inspections cannot check non-functional characteristics
such as performance, usability, etc.

Software Testing 145/13/2019

A model of the software testing process

Software Testing 155/13/2019

Stages of testing

 Development testing, where the system is tested during
development to discover bugs and defects.

 Release testing, where a separate testing team test a
complete version of the system before it is released to
users.

 User testing, where users or potential users of a system
test the system in their own environment.

Software Testing 165/13/2019

General testing guidelines

 Choose inputs that force the system to generate all error
messages

 Design inputs that cause input buffers to overflow

 Repeat the same input or series of inputs numerous
times

 Force invalid outputs to be generated

 Force computation results to be too large or too small.

Software Testing 175/13/2019

Development testing

Software Testing 185/13/2019

Development testing

 Development testing includes all testing activities that are carried out
by the team developing the system.

 Unit testing

 Individual program units or object classes are tested.

 Unit testing should focus on testing the functionality of objects or
methods.

 Component testing

 Several individual units are integrated to create composite components.

 Component testing should focus on testing component interfaces.

 System testing

 Some or all of the components in a system are integrated and the
system is tested as a whole.

 System testing should focus on testing component interactions.

Software Testing 195/13/2019

Unit testing

 Unit testing is the process of testing individual
components in isolation.

 It is a defect testing process.

 Units may be:

 Individual functions or methods within an object

 Object classes with several attributes and methods

 Composite components with defined interfaces used to access
their functionality.

Software Testing 205/13/2019

Object class testing

 Complete test coverage of a class involves

 Testing all operations associated with an object

 Setting and interrogating all object attributes

 Exercising the object in all possible states.

 Inheritance makes it more difficult to design object class
tests as the information to be tested is not localised.

Software Testing 215/13/2019

Automated testing

Whenever possible, unit testing should be automated so
that tests are run and checked without manual
intervention.

 In automated unit testing, you make use of a test
automation framework (such as JUnit) to write and run
your program tests.

 Unit testing frameworks provide generic test classes that
you extend to create specific test cases.

 They can then run all of the tests that you have
implemented and report on the success of otherwise of
the tests.

Software Testing 225/13/2019

Automated test components

 A setup part, where you initialize the system with the test
case, namely the inputs and expected outputs.

 A call part, where you call the object or method to be
tested.

 An assertion part where you compare the result of the
call with the expected result. If the assertion evaluates to
true, the test has been successful if false, then it has
failed.

Software Testing 235/13/2019

Boundary Conditions

A boundary condition is an input that is “one away” from
producing a different behavior in the program code

Such checks catch 2 common types of errors:

 Logical errors, in which a path to handle a special
case presented by a boundary condition is omitted

 Failure to check for conditionals that may cause the
underlying language or hardware system to raise an
exception (ex: arithmetic overflow)

2
4

Partition testing

 Partition testing, where you identify groups of inputs that
have common characteristics and should be processed
in the same way.

 Input data and output results often fall into different
classes where all members of a class are related.

 Each of these classes is an equivalence partition or
domain where the program behaves in an equivalent
way for each class member.

 Test cases should be chosen from each partition.

Software Testing 255/13/2019

Equivalence partitioning

Software Testing 265/13/2019

Equivalence partitions

Software Testing 275/13/2019

Testing paths through specification

 Path-completeness:

 Test cases are generated to exercise each path through a program.
 May be insufficient to catch all errors.
 Can be used effectively only for a program fragment that contains a

reasonable number of paths to test.
 Examine the method specifications (preconditions) & all paths through

method to generate unique test cases for testing.

/* REQUIRES: x >= 0 && y >= 10 */

public static int calc(int x, int y) { ... }

• Translate paths to test cases:

x = 0, y = 10 (x == 0 && y == 10)
x = 5, y = 10 (x > 0 && y == 10)
x = 0, y = 15 (x == 0 && y > 10)
x = 5, y = 15 (x > 0 && y > 10)
x = -1, y = 10 (x < 0 && y == 10)
x = -1, y = 15 (x < 0 && y > 10)
x = -1, y = 9 (x < 9 && y < 10)
x = 0, y = 9 (x == 0 && y < 10)
x = 1, y = 9 (x > 0 && y < 10)

2
8

Component testing

 Software components are often composite components
that are made up of several interacting objects.

 For example, in the weather station system, the reconfiguration
component includes objects that deal with each aspect of the
reconfiguration.

 You access the functionality of these objects through the
defined component interface.

 Testing composite components should therefore focus
on showing that the component interface behaves
according to its specification.

 You can assume that unit tests on the individual objects within
the component have been completed.

Software Testing 295/13/2019

Interface testing

 Objectives are to detect faults due to interface errors or
invalid assumptions about interfaces.

 Interface types

 Parameter interfaces Data passed from one method or
procedure to another.

 Shared memory interfaces Block of memory is shared between
procedures or functions.

 Procedural interfaces Sub-system encapsulates a set of
procedures to be called by other sub-systems.

 Message passing interfaces Sub-systems request services from
other sub-systems

Software Testing 305/13/2019

Interface testing guidelines

 Design tests so that parameters to a called procedure
are at the extreme ends of their ranges.

 Always test pointer parameters with null pointers.

 Design tests which cause the component to fail.

 Use stress testing in message passing systems.

 In shared memory systems, vary the order in which
components are activated.

Software Testing 315/13/2019

System testing

 System testing during development involves integrating
components to create a version of the system and then
testing the integrated system.

 The focus in system testing is testing the interactions
between components.

 System testing checks that components are compatible,
interact correctly and transfer the right data at the right
time across their interfaces.

 System testing tests the emergent behavior of a system.

Software Testing 325/13/2019

System and component testing

 During system testing, reusable components that have been
separately developed and off-the-shelf systems may be integrated
with newly developed components.

 The complete system is then tested.

 Components developed by different team members or sub-teams
may be integrated at this stage.

 System testing is a collective rather than an individual process.

 In some companies, system testing may involve a separate testing
team with no involvement from designers and programmers.

Software Testing 335/13/2019

Black-box testing

 It is the best place to start when attempting to test a program thoroughly

 Test cases based on program’s specification, not on its implementation
(see the homework grading sheets)

 Test cases are not affected by:

 Invalid assumptions made by the programmer

 Implementation changes
• Use same test cases even after program structures has changed

 Test cases can be generated by an “independent” agent, unfamiliar with
the implementation.

 Test cases should cover all paths (not all cases) through the specification,
including exceptions.

3
4

Test-driven development

Software Testing 355/13/2019

Test-driven development

 Test-driven development (TDD) is an approach to
program development in which you inter-leave testing
and code development.

 Tests are written before code and ‘passing’ the tests is
the critical driver of development.

 You develop code incrementally, along with a test for that
increment. You don’t move on to the next increment until
the code that you have developed passes its test.

 TDD was introduced as part of agile methods such as
Extreme Programming. However, it can also be used in
plan-driven development processes.

Software Testing 365/13/2019

Test-driven development

Software Testing 375/13/2019

TDD process activities

 Start by identifying the increment of functionality that is
required. This should normally be small and
implementable in a few lines of code.

Write a test for this functionality and implement this as
an automated test.

 Run the test, along with all other tests that have been
implemented. Initially, you have not implemented the
functionality so the new test will fail.

 Implement the functionality and re-run the test.

 Once all tests run successfully, you move on to
implementing the next chunk of functionality.

Software Testing 385/13/2019

Benefits of test-driven development

 Code coverage

 Every code segment that you write has at least one associated
test so all code written has at least one test.

 Regression testing

 A regression test suite is developed incrementally as a program
is developed.

 Simplified debugging

 When a test fails, it should be obvious where the problem lies.
The newly written code needs to be checked and modified.

 System documentation

 The tests themselves are a form of documentation that describe
what the code should be doing.

Software Testing 395/13/2019

Regression testing

 Regression testing is testing the system to check that
changes have not ‘broken’ previously working code.

 In a manual testing process, regression testing is
expensive but, with automated testing, it is simple and
straightforward. All tests are rerun every time a change is
made to the program.

 Tests must run ‘successfully’ before the change is
committed.

Software Testing 405/13/2019

Release testing

Software Testing 415/13/2019

Release testing

 Release testing is the process of testing a particular release of a system
that is intended for use outside of the development team.

 The primary goal of the release testing process is to convince the
supplier of the system that it is good enough for use.

 Release testing, therefore, has to show that the system delivers its specified
functionality, performance and dependability, and that it does not fail during
normal use.

 Release testing is usually a black-box testing process where tests are
only derived from the system specification.

Software Testing 425/13/2019

Release testing and system testing

 Release testing is a form of system testing.

 Important differences:

 A separate team that has not been involved in the system
development, should be responsible for release testing.

 System testing by the development team should focus on
discovering bugs in the system (defect testing). The objective of
release testing is to check that the system meets its
requirements and is good enough for external use (validation
testing).

Software Testing 435/13/2019

Performance testing

 Part of release testing may involve testing the emergent
properties of a system, such as performance and
reliability.

 Tests should reflect the profile of use of the system.

 Performance tests usually involve planning a series of
tests where the load is steadily increased until the
system performance becomes unacceptable.

 Stress testing is a form of performance testing where the
system is deliberately overloaded to test its failure
behaviour.

Software Testing 445/13/2019

User testing

Software Testing 455/13/2019

User testing

 User or customer testing is a stage in the testing process
in which users or customers provide input and advice on
system testing.

 User testing is essential, even when comprehensive
system and release testing have been carried out.

 The reason for this is that influences from the user’s working
environment have a major effect on the reliability, performance,
usability and robustness of a system. These cannot be replicated
in a testing environment.

Software Testing 465/13/2019

Types of user testing

 Alpha testing

 Users of the software work with the development team to test the
software at the developer’s site.

 Beta testing

 A release of the software is made available to users to allow
them to experiment and to raise problems that they discover with
the system developers.

 Acceptance testing

 Customers test a system to decide whether or not it is ready to
be accepted from the system developers and deployed in the
customer environment. Primarily for custom systems.

Software Testing 475/13/2019

The acceptance testing process

Software Testing 485/13/2019

Stages in the acceptance testing process

 Define acceptance criteria

 Plan acceptance testing

 Derive acceptance tests

 Run acceptance tests

 Negotiate test results

 Reject/accept system

Software Testing 495/13/2019

JUnit

Software Testing 505/13/2019

JUnit

 Unit-test framework for Java programs.
 open source software
 hosted on SourceForge: http://junit.sourceforge.net/javadoc

• Moved to http://junit.org (for JUnit 4 and later)
 not in the standard JDK:

import junit.framework.*;
//for JUnit 3.8 and earlier

import org.junit.*; //for JUnit 4 and later

 Associate a Test class with each unit
 one or more classes

51

JUnit
The test class has a set of test methods

public void testX()

where X is the method to be tested

The test methods use “assertions” to perform the tests,
ex:
Assert.assertEquals(x,y)
Assert.assertTrue(c)
Assert.assertSame(obj1, obj2)

52

Building unit tests with JUnit

Initialize any instance variables necessary
for testing in the test object

Define tests for emptiness, equality,
boundary conditions, ...

Define test suites, if necessary, to group
tests.

Use Assert methods to perform tests

53

JUnit 3.8 vs. 4

JUnit 4: all test methods are annotated with @Test.

 Unlike JUnit3 tests, you do not need to prefix the
method name with "test“.

JUnit 4 does not have the test classes extend
junit.framework.TestCase (directly or indirectly).

 Usually, tests with JUnit4 do not need to extend
anything (which is good, since Java does not
support multiple inheritance).

54

JUNIT tutorials with example

 Test-Driven Development with Junit:

 https://www.youtube.com/watch?v=2Ekty7t621k

 Junit NetBeans Example:

 https://examples.javacodegeeks.com/core-
java/junit/junit-netbeans-example/

Apache JMeter

Software Testing 565/13/2019

