
CSE101 – Spring 2020
Programming Assignment #5

 (10 points, Submission due date: 6 May 2020)

Instructions
For each of the following problems, create an error-free Python program.

- Each program should be submitted in a separate Python file that follows a particular
naming convention: Submit the answer for problem 1 as “Assign5Answer1.py” and for
problem 2 as “Assign5Answer2.py” and so on.

- These programs should execute properly in PyCharm using the setup we created in lab.
- At the top of every file add your name and Stony Brook email address in a comment.
- Write 2 test cases to test your code for all problems that do not take user input.

Problems
Problem 1: Answer the following questions. (2 points)

For the following, copy the questions into a text file and write your answers for each question. Name the
text file Assign5Answer1.

I. Place the following algorithm time complexities in order from fastest (least number of
comparisons) to the slowest: nlogn, n, n2, logn, 2n.

II. In your own words, explain the two characteristics that a recursive solution must have.
III. Why are divide-and-conquer algorithms often very efficient in terms of time complexity?

Problem 2: Recursive functions for numbers (3 points)

For this problem you must write the functions in a recursive manner (i.e. the function must call itself) – it is not
acceptable to submit an iterative solution to these problems.

A. Complete the following function that uses recursion to concatenate the numbers in forward order to form a

string.

If n = 9, it returns '0123456789'
If n = 13, it returns '012345678910111213'
Pre-condition: n >= 0

def concat_to(n):
 return None # Replace this with your implementation

B. Complete the following function that uses recursion to concatenates the numbers in reverse order to form a
string.

If n = 9, it returns '9876543210'
If n = 13, it returns '131211109876543210'
Pre-condition: n >= 0

def concat_reverse_to(n):
 return None # Replace this with your implementation

C. Complete the recursive function gcd(m, n) that calculate the greatest common denominator of two
numbers with the following rules:

If m = n, it returns n
If m < n, it returns gcd(m, n-m)
If m > n, it returns gcd(m-n, n)

 def gcd(m,n):
 return None # Replace this with your implementation

Problem 3: Recursive functions for lists (5 points)

For this problem you must write the functions in a recursive manner (i.e. the function must call itself) – it is not
acceptable to submit an iterative solution to these problems.

A. Complete the following function that uses recursion to find and return the even elements in the list u.

find_evens([1, 2, 3, 4] returns [2, 4]
find_evens([1, 2, 3, 4, 5, 6, 7, 8, 9, 10] returns [2, 4, 6, 8, 10]

def find_evens(u):
 return None # Replace this with your implementation

B. Complete the following recursive function that returns the zip of two lists u and v of the same length. Zipping

the lists should place the first element from each into a new array, followed by the second elements, and so on
(see example output).

zip([1, 2, 3], [4, 5, 6]) returns [1, 4, 2, 5, 3, 6]

def zip(u, v):
 return None # Replace this with your implementation

C. Complete the following recursive function that removes all occurrences of the number x from the list nums.

remove_number(5, [1, 2, 3, 4, 5, 6, 5, 2, 1]) returns [1, 2, 3, 4, 6, 2, 1]

def remove_number(x, nums):
 return None # Replace this with your implementation

