
CSE101 – Spring 2020
Programming Assignment #8

 (13 points + 3 points extra credit) Due: 8 June 2020

Instructions
For each of the following problems, create an error-free Python program.

- Each program should be submitted in a separate Python file that follows a particular

naming convention: Submit the answer for problem 1 as “Assign8Answer1.py” and for

problem 2 as “Assign8Answer2.py”.

- These programs should execute properly in PyCharm using the setup we created in lab.

- At the top of every file add your name and Stony Brook email address in a comment.

Problems

Problem 1: Wolfie Numerals

For this problem you will be writing some functions to convert between two number representations: the familiar

Arabic numerals we use every day and a new scheme we call Wolfie Numerals.

Download this initial code to get started.

Part 1. Arabic Numerals to Wolfie Numerals Converter (4 points)

You’ve heard of Roman numerals, but have you heard of Wolfie numerals? Probably not because some CS people at

SBU have invented them and we are using it for this assignment. Wolfie numerals are similar to Roman numerals in

that numbers are formed by combining symbols and adding the values. In Wolfie numerals, each numeral has a

fixed value representing a power of 8 (rather than a power of 10 or half of a power of 10, as in Roman numerals):

In addition, there are also symbols representing the halved powers of 8. A complete list of Wolfie numerals is given

below:

Symbols are placed from left to right in order of value, starting with the largest. For example, EFII is 14 : (8 × 1)
+ (4 × 1) + (1 × 2) = 8 + 4 + 2 = 14.

Note: You may want to review (or learn) the rules for the Roman numerals to better understand this assignment. In a

few specific cases, to avoid having three or more characters being repeated in succession (such as III or EEE),

subtractive notation is used, meaning that a smaller number is listed before the bigger value, as in this table:

http://www3.cs.stonybrook.edu/~alexkuhn/cse101-spring2020/assignments/assignment8/Assign8Answer1.py

For example, with these subtractive notations, instead of writing 7 as 4 + 1 + 1 + 1 (FIII), you must write it as 8 −
1 (IE), to shorten the numeral sequence.

Thus, there must never be more than two instances of a single symbol next to each other in a Wolfie numeral.

Also, only the numerals that are powers of 8 can be repeated. Moreover, it is disallowed for a symbol to be used in

an additive manner after it has been used in a subtractive manner. To see why this is true, consider Roman numerals

for a moment. CXC (190) is valid because C is used first in an additive way and then in a subtractive way. But

XCXX is invalid because X is first used in a subtractive way and then in an additive way. In Wolfie numerals,

examples of similar invalid cases would be expressions like IFII, ETE, and ESEE.

Based on the rules described above, an updated table of the numerals can be described as below:

In Assign8Answer1.py complete the function arabic2wolfie that takes one parameter, num, which is an

Arabic numeral that you will need to convert to the Wolfie numerals. Your function should return the Wolfie

numeral as a string.

Note: You will only be given num in the range [1, 63] (inclusive of both).

Below are some examples to help you understand. Keep in mind that you want the sequence to be as short as

possible while following the numeral rules.

Example #1: num = 10

Look from the larger Wolfie numerals to the smaller numerals. What is first value you can subtract? It’s 8. Now,

you have 2 left to worry about, and the only applicable value is 1. Since 1 can appear twice, we have two 1’s.

Therefore, 10 = 8 + 1 + 1, and this translates to EII.

Example #2: num = 14

Look from the larger Wolfie numerals to the smaller numerals. What is first value you can subtract? It’s 8. Now,

you have 6 left to worry about.

Applying the same technique, 6 can be translated to 4 + 1 + 1. Therefore, 14 = 8 + 4 + 1 + 1, which translates to

EFII.

Example #3: num = 22
Applying the same technique, first we can subtract two 8’s because E can be repeated. Then, we have 6 to worry

about. From the last example we know that it can be expressed by 4+1+1. Therefore, 22 = 8+8+4+1+1, which

translates to EEFII.

Example #4: num = 28

Applying the same technique as above, 28 = 24 + 4, which translates to ETF.

Example #5: num = 30

Applying the same technique as above, 30 = 24 + 4 + 1 + 1, which translates to ETFII.

Example #6: num = 54

Applying the same technique as above, 54 = 32 + 8 + 8 + 4 + 1 + 1, which translates to TEEFII.

Test Cases:

arabic2wolfie(10) returns ’EII’

arabic2wolfie(14) returns ’EFII’

arabic2wolfie(22) returns ’EEFII’

arabic2wolfie(28) returns ’ETF’

arabic2wolfie(30) returns ’ETFII’

arabic2wolfie(54) returns ’TEEFII’

Part 2. Wolfie Numerals to Arabic Numerals Converter (4 points)

In Assign8Answer1.py complete the function wolfie2arabic that takes one string parameter,

numerals, consisting of properly-formatted Wolfie numerals. Your function should return the integer represented

by the Wolfie numerals. The converted integer is guaranteed to be in the range [1, 63].

Process the input string from left-to-right, looking for combinations of numerals (possibly indicating subtraction) or

single numerals that are not involved in subtraction. Add the value of the numerals to a running total as you process

the string.

To find combinations of numerals, consider two characters simultaneously (e.g., IE or ES), taking care not to

overrun the end of the string while doing this (an ”index out of range” error). Proceed in this manner until the

rightmost numeral has been processed.

Example Test Cases:

wolfie2arabic(’EII’) returns 10

wolfie2arabic(’EFII’) returns 14

wolfie2arabic(’EEFII’) returns 22

wolfie2arabic(’ETF’) returns 28

wolfie2arabic(’ETFII’) returns 30

wolfie2arabic(’TEEFII’) returns 54

Problem 2: CSV File Processing

A comma-separated values (CSV) file is a text file that uses a comma to separate values. A CSV file stores

tabular data, such as numbers or text in a spreadsheet, in plain text. Each line of the file is a data record.

Each record consists of one or more fields, separated by commas. Thus, the file format gets its name

from using the comma to separate different values.

Refer to the section on "Parsing CSV Files With Python’s Built-in CSV Library" from the tutorial at this

link: https://realpython.com/python-csv/#writing-csv-file-from-a-dictionary-with-csv to complete this

problem.

https://realpython.com/python-csv/#writing-csv-file-from-a-dictionary-with-csv

Part 1. Read a CSV file and print content (2 points)

For this problem you need to download and add the worldpopulation.csv file to your project.

Using the code given in the section ‘Reading CSV Files Into a Dictionary With csv’ as an example, write

your own function called readcsv()which reads in the CSV file at the path 'worldpopulation.csv' and

prints the following output for each country:

GI Gibraltar has a population of 34733 in 2018, and will have a

population of 35897 in 2030.

TC Turks and Caicos Islands has a population of 35963 in 2018, and

will have a population of 41528 in 2030.

For reading the CSV file, please note that each row read by the reader is a dictionary, and you will need

to update the tutorial code to read the dictionary with the appropriate keys for the worldpopulation.csv

file. The keys are the names in the first row (e.g. "Flag", "Country") of the CSV file.

Part 2. Process data and write content to other CSV file (3 points)

Refer to the section called ‘Writing CSV File From a Dictionary With csv’. Create your own function called

writecsv() in which you will copy and extend the same code that you wrote for the readcsv()

function to perform the following:

1) Calculate the ratio of the 2030 population to the 2018 population for each country. For example,

for South Korea, this ratio is 1.0300.

2) Write this ratio along with the other parameter values to a new file named

'worldpopulationchange.csv'. The first few lines in this file should look like the

following:

Flag Country Population2018 Population2030 Ratio

CN China 1415045928 1441181813 1.018469991

IN India 1354051854 1512985207 1.11737612

US United States 326766748 354711670 1.085519479

ID Indonesia 266794980 295595234 1.10794901

For solving part 2, one approach is before reading data in the worldpopulation.csv file, create an

output CSV file and set its headers using the following code:

output_file = open('worldpopulationchange.csv', mode='w')

fieldnames = ['Flag', 'Country', 'Population2018', 'Population2030',

'ratio']

output_writer = csv.DictWriter(output_file, fieldnames=fieldnames)

output_writer.writeheader()

http://www3.cs.stonybrook.edu/~alexkuhn/cse101-spring2020/assignments/assignment8/worldpopulation.csv

Then when you are reading each dictionary row , you can create a new key ‘ratio’ and assign it a

value using the following logic:

row['ratio'] = float(row["Population2030"])/ float(row["Population2018"])

Part 3. Use Matplotlib library for graph rendering Extra Credit (3 points)

This part of the problem is extra credit and in it you will plot the data from the CSV file.

Matplotlib library (https://matplotlib.org/) in Python can be used to render a variety of charts. Your

tasks are the following:

a. Install Matplotlib library on your system. See installation instructions at:

https://matplotlib.org/users/installing.html – if the commands in the instructions does not

work, you may want to try typing “pip3 install matplotlib” in your Command Prompt /

Terminal.

b. Go through examples of bar charts given at: https://matplotlib.org/gallery/index.html

c. Extend your earlier code to display two separate bar charts for the following (See example

outputs):

i. Top 20 countries with the greatest population growth (in percent) from 2018 to 2030;

and

ii. Top 20 countries with the greatest population loss (in percent) from 2018 to 2030.

Note that you will need to convert the ratio from before into a percentage for the

growth/loss of the population of a country.

You may want to try with different colors or different formats for plotting these graphs. Example

graphs are below:

https://matplotlib.org/
https://matplotlib.org/users/installing.html
https://matplotlib.org/gallery/index.html

	Instructions
	Problems
	Problem 1: Wolfie Numerals
	Problem 2: CSV File Processing

