
6/9/2020

1

Introduction to
Computers
LECTURE 14 - CRYPTOGRAPHY

Announcements
This lecture: Cryptography

Reading: Read Chapter 5 of “Blown to Bits”

Acknowledgement: Some of this lecture slides are based on CSE 101 lecture notes by Prof. Kevin
McDonald at SBU

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 2

1

2

6/9/2020

2

Cryptography
•The field of cryptography (literally, “secret writing”) has a long history
•Modern cryptography contains a large amount of terminology

• Plaintext refers to unencrypted data that can be intercepted by some means
• Encryption scrambles data in a way that makes it unintelligible to those unauthorized to view it

• The encrypted data is called ciphertext
•Modern encryption schemes often use public-key cryptography

• In public-key cryptography, each user has two related keys, one public and one private
• Each person’s public key is distributed freely

•In practice, both secret key and public key cryptography are used in certain cases
• Content (i.e. email) is encrypted with a random symmetric key (secret key cryptography)
• The random key is encrypted with the recipient’s public key (public-key cryptography)

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 3

Cryptography
•The public/private key pairs are generated by a computer program in such a way:

• that decryption of content encrypted with the public key is only possible with the private key
• Decryption of content encrypted with the private key is only possible with the public key
• The keys themselves are modular inverses around a large composite number based on the product of

two very large primes
• The large composite is difficult to factor so knowing the public key does not yield the related private key
• The mathematical details are otherwise beyond the scope of the course

•  But if you are REALLY interested, look here: https://en.wikipedia.org/wiki/RSA_(cryptosystem)
• Other illustration: https://www.youtube.com/watch?v=E5FEqGYLL0o

•In this Lecture some simpler, but much less secure techniques for encrypting text are covered

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 4

3

4

6/9/2020

3

Example: Email Encryption
•A random key is generated and used to encrypt a message with a symmetric algorithm like AES

• The random key is called a Content-Encryption Key or CEK
•The random key is encrypted with the receiver’s public key

• The public key is called a Key Encryption Key or KEK
•Only the receiver’s private key can decrypt the random key needed to decrypt the content
•Why do this?

• Public Key operations are computationally expensive
• Better to use efficient secret key cryptography on larger blocks of data (the content)
• Then use public key cryptography on only a small piece of data (the CEK)

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 5

Caesar Cipher
•One of the simplest ciphers (algorithms for encrypting and decrypting text) is the single
substitution cipher
• One variant of the single substitution cipher is known as a shift cipher which works by replacing each

letter of a word with the letter of the alphabet that is k letters later in the alphabet
• One variant of the shift cipher is known as the Caesar cipher. This cipher sets k to 3

•K is the key of the encryption scheme and provides the shift amount: a number in the range 1
through 25, inclusive

•In general, the key for a cipher is the secret piece of information that both parties must
exchange ahead of time

•Julius Caesar used k=3 in his military communications, hence the name Caesar cipher given to a
shift cipher with a key of 3

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 6

5

6

6/9/2020

4

Caesar Cipher
•For example, to encode letters with k=3 the following is done:

• Replace “A” with “D”, “B” with “E”, and so on
•For letters at the end of the alphabet, “wrap-around” to the front of the alphabet

• For k=3, we would replace “X” with “A”, “Y” with “B”, and “Z” with “C”
•The phrase “Stony Brook” with a shift amount of 2 would be encrypted as “Uvqpa Dtqqm”
•To decrypt a message, shift each letter of the encrypted message leftward in the alphabet by the
shift amount

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 7

Caesar Cipher
•Let’s consider functions caesar_encrypt and caesar_decrypt

•Both functions will take a string and a shift amount
• For caesar_encrypt, the string is a plaintext message
• For caesar_decrypt, the string is an encrypted message
• Non-letter characters will be left unencrypted

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 8

7

8

6/9/2020

5

Caesar Cipher
•The encryption algorithm is pretty straightforward:

• First map each letter to a number in the range 0 through 25: A  0, B  1, …, Z  25
• Next add k to the number and mod by 26
• Finally, map the shifted value to a letter from the alphabet

•So, the encryption formula is E(x)=(x+k) mod 26, where x is the number for the plaintext letter, k
is the key, and E(x) gives the number for the ciphertext letter

•To decrypt, subtract the key from the encrypted value, add 26 (to eliminate any negative
differences), and mod by 26 to recover the original number

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 9

caesar_encrypt()
def caesar_encrypt(plaintext, shift_amt):

ciphertext = ‘’
for ch in plaintext:

if ch.isupper():
replacement = (ord(ch) - ord('A’) + shift_amt) % 26 + ord('A’)
ciphertext += chr(replacement)

elif ch.islower():
replacement = (ord(ch) - ord('a’) + shift_amt) % 26 + ord('a’)
ciphertext += chr(replacement)

else:
ciphertext += ch

return ciphertext

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 10

See caesar_cipher.py

9

10

6/9/2020

6

caesar_decrypt()
def caesar_decrypt(ciphertext, shift_amt):

plaintext = ‘’
for ch in ciphertext:

if ch.isupper():
replacement = (ord(ch) - ord('A’) – shift_amt + 26) % 26 + ord('A’)
plaintext += chr(replacement)

elif ch.islower():
replacement = (ord(ch) - ord('a’) - shift_amt + 26) % 26 + ord('a’)
plaintext += chr(replacement)

else:
plaintext += ch

return plaintext

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 11

See caesar_cipher.py

Multiplicative Cipher
•The Caesar cipher encrypts and decrypts numbers by adding or subtracting the key to a plaintext
letter’s number (where A  0, B  1, …, Z  25)

•Suppose multiplication is used instead multiply each number by the key?
• This is a multiplicative cipher

•Provided that the key is relatively prime to 26, no two letters will be encrypted to the same
cipher letter
• Two numbers are relatively prime if they have no common factors except for 1

•The encryption formula is E(x) = kx mod 26

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 12

11

12

6/9/2020

7

Multiplicative Cipher
•Suppose the key is 7

• The letter A (0) is mapped to (0x7) mod 26 = 0, which is also A
• The letter J (9) is mapped to (9x7) mod 26 = 11, which is L

•Although this cipher seems to be more complex than a shift cipher, it is less secure than the shift
cipher because the number of possible keys is smaller

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 13

Multiplicative Cipher
•Example with k=7. So, E(x)=7x mod 26.

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 14

13

14

6/9/2020

8

multiplicative_encrypt()
def multiplicative_encrypt(plaintext, k):

ciphertext = ‘’
for ch in plaintext:

if ch.isupper():
replacement = ((ord(ch) - ord('A')) * k) % 26 + ord('A’)
ciphertext += chr(replacement)

elif ch.islower():
replacement = ((ord(ch) - ord('a')) * k) % 26 + ord('a’)
ciphertext += chr(replacement)

else:
ciphertext += ch

return ciphertext

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 15

Multiplicative Cipher
•To decrypt a message encrypted using this scheme some arithmetic is needed to determine the
modular multiplicative inverse of k with respect to 26

•Going into that much math is a bit out of scope of the course
•So instead, to decrypt simply encrypt the entire alphabet to find the 26 mappings, and then
perform the reverse mapping for each encrypted letter
• Remember that the recipient knows the value of k

•To help write this brute force algorithm use Python’s zip function
•zip allows iterating over two or more collections simultaneously

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 16

15

16

6/9/2020

9

Aside: the zip() Function
names = ['Adam', 'Chris', 'Mary', 'Frank']
ages = [21, 19, 24, 22]
for name, age in zip(names, ages):

print(name + ' ' + str(age))

•Output:
Adam 21
Chris 19
Mary 24
Frank 22

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 17

Multiplicative Cipher
•Two other Python tricks/features to use:

• a dictionary comprehension, which was explored in an earlier Lecture, and
• the string called string.ascii_letters, which contains all 26 letters of the Latin alphabet in uppercase

and lowercase

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 18

17

18

6/9/2020

10

multiplicative_decrypt()
reverse_mapping = {}
decrypt_key = -1
def multiplicative_decrypt(ciphertext, k):

global reverse_mapping, decrypt_key
if k != decrypt_key:

decrypt_key = k
encrypted_letters = [multiplicative_encrypt(letter, k)

for letter in string.ascii_letters]
reverse_mapping = {encrypted_letter: letter

for letter, encrypted_letter in
zip(string.ascii_letters, encrypted_letters)}

plaintext = ‘’
for ch in ciphertext:

if ch in reverse_mapping:
plaintext += reverse_mapping[ch]

else:
plaintext += ch

return plaintext

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 19

See multiplicative_cipher.py

Affine Cipher
•An affine cipher combines ideas from the shift cipher and multiplicative cipher, performing both
a multiplication and an addition

•The value x of some letter is encrypted using the formula (ax+b) mod 26 where a is the
multiplier and b is the shift amount
• a and b together from the encryption key

•In some sense, the affine cipher should be stronger than the shift cipher and multiplicative
cipher, but it’s still inherently weak because it’s still a substitution cipher

•The encryption function looks similar to the one for the multiplicative cipher

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 20

19

20

6/9/2020

11

affine_encrypt()
def affine_encrypt(plaintext, a, b):

ciphertext = ‘’
for ch in plaintext:

if ch.isupper():
replacement = ((ord(ch) - ord('A')) * a + b) % 26 + ord('A’)
ciphertext += chr(replacement)

elif ch.islower():
replacement = ((ord(ch) - ord('a')) * a + b) % 26 + ord('a’)
ciphertext += chr(replacement)

else:
ciphertext += ch

return ciphertext

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 21

See affine_cipher.py

Rail Fence Cipher
•The rail fence cipher is a type of transposition cipher
•In a transposition cipher, the characters in the original message are rearranged somehow (as
opposed to being substituted)

•The rail fence cipher rearranges the characters in a zigzag pattern
•The key is the number of rows used to create the zigzag
•For example, the message STONYBROOKUNIV written over two rows would look like this:

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 22

21

22

6/9/2020

12

Rail Fence Cipher: Encryption

•To produce the final encrypted message read off the characters row-by-row:
SOYROUITNBOKNV

•The same message written over three rows would look like this:

•The encrypted message would be: SYOITNBOKNVORU

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 23

Rail Fence Cipher: Encryption
•To implement the rail fence cipher create a list of empty strings, one per row, and append
characters one-by-one to each string

•Use a variable row (initialized to 0) that first increases towards num_rows, then decreases
back towards 0, then increase again, etc., until the entire plaintext message has been encrypted

•This computation will be encapsulated in a helper function called next_row

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 24

23

24

6/9/2020

13

next_row() Helper Function
def next_row(row, step, num_rows):

if row == 0:
step = 1

elif row == num_rows - 1:
step = -1

row += step
return row, step

•To get a sense of how this function works, pretend that there are 4 rows in the grid and the
plaintext message has 10 characters

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 25

See railfence_cipher.py

next_row() Helper Function
def next_row(row, step, num_rows):

if row == 0:
step = 1

elif row == num_rows - 1:
step = -1

row += step
return row, step

Test Code
row = 0
step = 1
num_rows = 4
for i in range(10):

print(row, step)
row, step = next_row(row, step, num_rows)

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 26

25

26

6/9/2020

14

railfence_encrypt()
def railfence_encrypt(plaintext, num_rows):

row = 0
step = 1
create num_rows empty strings in a list
rows = [''] * num_rows
for ch in plaintext:

rows[row] += ch
row, step = next_row(row, step, num_rows)

return ''.join(rows)

•The join function creates a string by concatenating the elements of a list together
•See railfence_cipher.py

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 27

Example: railfence_encrypt()
•Function call: railfence_encrypt(‘STONY’, 3)

rows = [‘’, ‘’, ‘’]
for ch in plaintext:

rows[row] += ch
row, step = next_row(row, step, num_rows)

•Contents of rows list:
rows = [‘SY’,

‘TN’,
‘O’]

•Then call ''.join(rows) to generate the final ciphertext: ‘SYTNO’

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 28

27

28

6/9/2020

15

Rail Fence Cipher: Decryption
•The idea for decryption is to first construct a grid using lists of lists of empty strings
•The key tells how many rows are in the grid
•The length of the message tells the number of columns
•Using the same zigzag path from the encryption algorithm, place a None object (or some other
marker) where the characters will go

•Then, take letters one at a time from the encrypted text and move across the grid row by row,
replacing the None values with characters from the encrypted message

•Finally, trace out the zigzag pattern once more to read off the plaintext characters

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 29

Rail Fence Cipher: Decryption
•Example for ciphertext 'SYOITNBOKNVORU' with num_rows = 3
•The input contains 14 letters, so create a grid with 3 rows and 14 columns by creating a list
containing 3 lists of 14 empty strings each:

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 30

29

30

6/9/2020

16

Rail Fence Cipher: Decryption
Next, travel in a zigzag pattern, inserting None objects, which are visualized below as dots:

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 31

Rail Fence Cipher: Decryption
•Then travel across each row, inserting characters from the ciphertext whenever a None object is
found

•The ciphertext is 'SYOITNBOKNVORU'
•First row completed:

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 32

31

32

6/9/2020

17

Rail Fence Cipher: Decryption
•The ciphertext is 'SYOITNBOKNVORU'
•Second row completed:

•Third row completed: 'SYOITNBOKNVORU’

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 33

Rail Fence Cipher: Decryption
•It is now easy to read off the original message by traversing the grid once again in zigzag order

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 34

33

34

6/9/2020

18

railfence_decrypt()
def railfence_decrypt(ciphertext, num_rows):

grid = []
for i in range(num_rows):

grid += [[''] * len(ciphertext)]
set up the grid, placing a None value
where each letter will go
row = 0
step = 1
for col in range(len(ciphertext)):

grid[row][col] = None
row, step = next_row(row, step, num_rows)

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 35

See railfence_cipher.py

railfence_decrypt()
place characters from the encrypted
message into the grid
next_char_index = 0
for row in range(num_rows):

for col in range(len(ciphertext)):
if grid[row][col] is None:

grid[row][col] = ciphertext[next_char_index]
next_char_index += 1

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 36

See railfence_cipher.py

35

36

6/9/2020

19

railfence_decrypt()
read the characters from the grid in
zigzag order
plaintext = ''
row = 0
step = 1
for col in range(len(ciphertext)):

plaintext += grid[row][col]
row, step = next_row(row, step, num_rows)

return plaintext

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 37

See railfence_cipher.py

The Vigenère Cipher
•The Vigenère Cipher was invented in the 16th century by Frenchman Blaise de Vigenère

• Uses a series of substitution ciphers to encode a message
• Took about three centuries before cryptographers figured out a reliable way of cracking this cipher
• Based on the use of a 26x26 grid of substitution ciphers, each one shifted to the right by one spot
• A keyword or phrase also needs to be picked that determines which rows of this grid to use

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 38

See vigenere_cipher.py

37

38

6/9/2020

20

The Vigenère Cipher

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 39

The Vigenère Cipher: Example #1
•Suppose the keyword chosen is PYTHON
•Then use this part of the grid:

•If the message is longer than the key, repeat the key as many times as needed to encode the
message

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 40

39

40

6/9/2020

21

The Vigenère Cipher: Example #1

•To encrypt each plaintext letter, find its column along the top row of the table
•Then find the row for the corresponding letter from the key
•The cell at the intersection of that row and column gives the letter for the encrypted message

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 41

The Vigenère Cipher: Example #1

•Example: encode COMPUTER
•Key: P Y T H O N P Y
•Plaintext: C O M P U T E R
•Ciphertext : R

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 42

41

42

6/9/2020

22

The Vigenère Cipher: Example #1

•Example: encode COMPUTER
•Key: P Y T H O N P Y
•Plaintext: C O M P U T E R
•Ciphertext : R M

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 43

The Vigenère Cipher: Example #1

•Example: encode COMPUTER
•Key: P Y T H O N P Y
•Plaintext: C O M P U T E R
•Ciphertext : R M F

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 44

43

44

6/9/2020

23

The Vigenère Cipher: Example #1

•Example: encode COMPUTER
•Key: P Y T H O N P Y
•Plaintext: C O M P U T E R
•Ciphertext : R M F W

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 45

The Vigenère Cipher: Example #1

•Example: encode COMPUTER
•Key: P Y T H O N P Y
•Plaintext: C O M P U T E R
•Ciphertext : R M F W I

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 46

45

46

6/9/2020

24

The Vigenère Cipher: Example #1

•Example: encode COMPUTER
•Key: P Y T H O N P Y
•Plaintext: C O M P U T E R
•Ciphertext : R M F W I G

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 47

The Vigenère Cipher: Example #1

•Example: encode COMPUTER
•Key: P Y T H O N P Y
•Plaintext: C O M P U T E R
•Ciphertext : R M F W I G T

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 48

47

48

6/9/2020

25

The Vigenère Cipher: Example #1

Example: encode COMPUTER
Key: P Y T H O N P Y
Plaintext: C O M P U T E R
Ciphertext : R M F W I G T P

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 49

The Vigenère Cipher: Example #2
•Decryption follows the reverse procedure as for encryption
•Suppose the keyword is JOKE and the ciphertext is OIXGCWYR
•To decrypt, first arrange the repeated keyword and encrypted message as follows:
•Key: J O K E J O K E
•Ciphertext: O I X G C W Y R

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 50

49

50

6/9/2020

26

The Vigenère Cipher: Example #2
•Then, search for each letter from the encrypted message in the row for the corresponding letter
from the key

•The column label provides the decrypted letter
•The ciphertext is O I X G C W Y R
•For this ciphertext, look up O in the row for J. Looking at the top row, notice that the column is
F

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 51

The Vigenère Cipher: Example #2
•The ciphertext is O I X G C W Y R
•The plaintext so far is F
•Then look up the I from the encrypted message in row O.
•The I is in column U. The decrypted message so far is FU.

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 52

51

52

6/9/2020

27

The Vigenère Cipher: Example #2
•The ciphertext is O I X G C W Y R
•The plaintext so far is FU
•Next look up the letter X in row K. X is in column N.
•The decrypted message is now FUN.

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 53

The Vigenère Cipher: Example #2
•The ciphertext is O I X G C W Y R
•The plaintext so far is FUN
•Next look up the letter G in row E. G is in column C.
•The decrypted message is now FUNC.

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 54

53

54

6/9/2020

28

The Vigenère Cipher: Example #2
•Continue in this fashion until the last letter. The final decrypted message is generated:
•Key: J O K E J O K E
•Ciphertext: O I X G C W Y R
•Plaintext: F U N C T I O N

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 55

The Vigenère Cipher
•To implement the Vigenère Cipher, there is no need to represent the table in the computer’s
memory

•Instead, use the algorithm below, which computes the table entries “on the fly”:
1. Map each letter from the plaintext to a number in the range 0 to 25, as was done with the

other ciphers. (A → 0, B → 1, … , Z → 25)
2. Add this number to the number corresponding to the keyword’s letter (and then mod by 26).

• Example: for plaintext COMPUTER and keyword PYTHON
• 2 is the number for C and 15 is the number for P
• To encode C: C → 2→ (2 + 15) mod 26 = 17

3. Convert the sum (mod 26) to its corresponding leƩer of the alphabet (with 0 → A, 1 → B, …,
25 → Z).

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 56

55

56

6/9/2020

29

The Vigenère Cipher
•The decryption algorithm performs a similar series of steps, but in reverse order:
1. Map each letter from the encrypted message to a number in the range 0 to 25.
2. Subtract from this number the number corresponding to the keyword’s letter.
3. Add 26 in case the subtraction resulted in a negative difference, and then compute the

remainder mod 26.
4. Convert the resulƟng number to its corresponding leƩer of the alphabet (0 → A, 1 → B, …, 25

→ Z).

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 57

vigenere_encrypt()
def vigenere_encrypt(plaintext, keyword):

duplicate the keyword as many times as needed
keyword = keyword * (len(plaintext) // len(keyword) + 1)
convert plaintext letters to numbers
plaintext_nums = [ord(ch) - ord('A') for ch in plaintext]
convert keyword letters to numbers
keyword_nums = [ord(ch) - ord('A') for ch in keyword]
generate ciphertext
ciphertext = ‘’
for i in range(len(plaintext)):

add the two numerical codes and map sum (mod 26)
back to a letter
ciphertext += chr((plaintext_nums[i]+keyword_nums[i]) % 26 + ord('A’))

return ciphertext

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 58

57

58

6/9/2020

30

vigenere_decrypt()
def vigenere_decrypt(ciphertext, keyword):

duplicate the keyword as many times as needed
keyword = keyword * (len(ciphertext) // len(keyword) + 1)
convert ciphertext letters to numbers
ciphertext_nums = [ord(ch)-ord('A') for ch in ciphertext]
convert keyword letters to numbers
keyword_nums = [ord(ch)-ord('A') for ch in keyword]
generate plaintext
plaintext = ‘’
for i in range(len(ciphertext)):

subtract keyword num from ciphertext num, add 26
and map difference (mod 26) back to a letter
plaintext += chr((ciphertext_nums[i]-keyword_nums[i] + 26) % 26 + ord('A’))

return plaintext

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 59

Encryption Algorithms
•A major drawback of the shift, multiplicative, affine, transposition and Vigenère ciphers (beside
the obvious drawback that they can be broken) is the use of a shared private key

•The private key must first be exchanged, presumably in a face-to-face manner or some other
“secure” way

•Public-key cryptography does not have this shortcoming: each person has a private key that is
never shared and a public key that is shared

•The only known way at the moment to crack the hardest public-key encryption algorithms is to
try virtually all the possible keys, which is an intractable problem

•Public key cryptography is not a panacea:
• Operations to encrypt/decrypt are ‘expensive’ computationally
• Public key ownership is an issue

• To assure an attacker cannot create a man-in-the-middle attack, authentication is needed with certificates
• Generation and use of certificates is beyond the scope of this course.
• Here’s a starting reference if you’re interested: https://en.wikipedia.org/wiki/Public_key_certificate

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 60

59

60

6/9/2020

31

Cryptography Website
•www.counton.org/explorer/codebreaking/index.php
•This is an excellent website that covers the basics of encryption.
•It includes programs that can be used to test knowledge of the ciphers studied in this Lecture

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 61

Questions?

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 62

61

62

