Computer Science Principles

CHAPTER 3 - ITERATION, LISTS, AND ALGORITHM DESIGN

Reading: Read Chapter 3 of Conery

First quiz on Monday

Acknowledgement: These slides are revised versions of slides prepared by Prof. Arthur Lee, Tony Mione, Alex Kuhn and Pravin Pawar for earlier CSE 101 classes. Some slides are based on Prof. Kevin McDonald at SBU CSE 101 lecture notes and the textbook by John Conery.

Overview

This lecture will focus on:

- i. iteration (code that repeats a list of steps)
- ii. lists
- iii. the thought process for **designing algorithms**

As an example, we will look at the ancient algorithm for finding prime numbers: **the Sieve of Eratosthenes**

Prime Numbers

A **prime** is a natural number greater than 1 that has no divisors other than 1 and itself Non-prime numbers are called composite numbers

Example primes: 2, 3, 5, 11, 73, 9967, . . . Example composites: 4 (2x2), 10 (2x5), 99 (3x3x11)

Prime numbers play an important role in encrypting data and Internet traffic

<section-header><text><text><text><list-item><list-item><list-item><list-item><list-item>

Collections

In everyday life, collections of objects are often encountered

- Course catalog: a collection of course descriptions
- Parking lot: a collection of vehicles

Mathematicians also work with collections

- Matrix (a table of numbers)
- Sequence (e.g., 1, 1, 2, 3, 5, 8, ...)

In computer science collections are made by defining a **data structure** that includes references to **objects**

The term object means a piece of data

• Objects include numbers, strings, dates, and more

Expression of the property of the propert

def sum(nums): total = 0 for num in nun total += num return total	ns: Initialize a variable to store the running total	
# Example		
t = sum([3, 5, 1])	# t will equal 9	

Trace execution in PyCharm Here's the state of the program after hitting the blue arrow several times: Debug: 📑 sum_tests 🛛 🛛 Console 😑 🖄 🛨 🛨 🛨 🎽 🖼 Debugger C Frames Variables Þ oi num = {int} 3 Ξ MainThread \mathbf{T} + image: nums = {list} <class 'list'>: [3, 5, 1] sum, sum_tests.py:3 ot total = {int} 3 main, sum_tests.py:9 ୖ C <module>, sum_tests.py:11 % 盲 In lab, there will be opportunity to practice using the debugger • [Hint] Getting familiar with this tool will save hours of headaches later on

SieveLab Below you can see an example of how to use the SieveLab module import PythonLabs.SieveLab worksheet = [None, None] + list(range(2, 400)) PythonLabs.SieveLab.view_sieve(worksheet) Call a SieveLab function named mark_multiples to see how the algorithm removes sulliples of a specified value . In two arguments to mark_multiples are a number k and the worksheet list . How some the updated to show that k is prime (indicated by a blue square) . Gray boxes will be drawn over all the multiples of k

SieveLab										
PuthonLabs Siev	zeT.a	h er	ase	mul	tinl	25(2	woi	rksh	eet)	
i ythonidadoinic	2 3	5	7	0	11	13	15	17	10	
21	23	25	27	29	31	33	35	37	39	
41	43	45	47	49	51	53	55	57	59	
61	63	65	67	69	71	73	75	77	79	
81	83	85	87	89	91	93	95	97	99	
101	103	105	107	109	111	113	115	117	119	
121	123	125	127	129	131	133	135	137	139	
141	143	145	147	149	151	153	155	157	159	
161	163	165	167	169	171	173	175	177	179	
181	183	185	187	189	191	193	195	197	199	
201	203	205	207	209	211	213	215	217	219	
221	223	225	227	229	231	233	235	237	239	
241	243	245	247	249	251	253	255	257	259	
261	203	200	207	209	2/1	213	2/5	207	279	
301	203	205	307	300	251	295	295	317	299	
321	323	325	327	320	331	333	335	337	330	
341	343	345	347	349	351	353	355	357	359	
361	363	365	367	369	371	373	375	377	379	
	000	205	207	200	201	202	205	207	200	

<u> </u>	1								
Slevel	.ab								
PuthonLah	s Sievelah ma	rlz mul	tinle	sc(3	wor	kch	oot)		
r ythondas	Sibic veriabilita		pi	.5(0,	WOL	KJI			
	2 3	5 7	9	11	13	15	17	19	
	21 23	25 27	29	51	33	35	57	39	
	61 63	4J 47 65 67	49	71	73	75	77	79	
	81 83	85 87	89	91	93	95	97	99	
	101 103	105 107	109	111	113	115	117	119	
	121 123	125 127	129	131	133	135	137	139	
	141 143	145 147	149	151	153	155	157	159	
	161 163	165 167	169	171	173	175	177	179	
	181 183	185 187	189	191	193	195	197	199	
	201 203	205 207	209	211	213	215	217	219	
	221 223	225 227	229	231	233	235	237	239	
	241 243	245 247	249	251	253	255	257	259	
	261 263	265 267	269	271	273	275	277	279	
	281 283	285 287	289	291	293	295	297	299	
	301 303	305 307	309	311	313	315	317	319	
	321 323	325 327	329	331	333	335	337	339	
	341 343	345 347	349	351	353	355	357	359	
	361 363	365 367	369	3/1	3/3	3/5	3/7	379	
	381 383	385 387	389	391	393	395	397	399	

SieveLab PythonLabs.SieveLab.erase_multiples(3, worksheet) 2 3 23 37 25 31 61

	J D										
PuthonLabs	Siovola	h m	ark	m 11	ltinl	05(5	3470	rks	hoof)	
r ythonidados			5	7	p.		12		17	10	
		23	25	1	29	31	15	35	37	15	
	41	43	20	47	49	0.	53	55	0.	59	
	61		65	67		71	73		77	79	
		83	85		89	91		95	97		
	101	103		107	109		113	115		119	
	121		125	127		131	133		137	139	
		143	145		149	151		155	157		
	161	163		167	169		173	175		179	
	181		185	187		191	193		197	199	
		203	205		209	211		215	217		
	221	223		227	229		233	235		239	
	241		245	247		251	253		257	259	
	004	263	265	007	269	271	000	275	277	000	
	281	283	205	287	289	044	293	295	047	299	
	301	222	305	307	220	311	313	225	317	519	
	2/1	323	525	247	329	331	252	330	331	250	
	361	040	365	367	549	371	373	555	377	370	
	301		303	307		571	515	0.05	007	513	

SieveLab

	2	3	5	7		11	13	17	19	
		23			29	31		37		
4	1	43		47	49		53		59	
6	1			67		71	73	77	79	
		83			89	91		97		
10	01	103		107	109		113		119	
12	21			127		131	133	137	139	
		143			149	151		157		
16	61	163		167	169		173		179	
18	31			187		191	193	197	199	
		203			209	211		217		
22	21	223		227	229		233		239	
24	41			247		251	253	257	259	
		263			269	271		277		
20	31	283		287	289		293		299	
30	01			307		311	313	317	319	
		323			329	331		337		
34	41	343		347	349		353		359	
30	61			367		371	373	377	379	
		383			389	391		397		
		3944 (947575				100000				

PythonLabs.S	ieveL	ab.era	ase_m	ultip	oles(7, wor	kshee	t)	
-		2 3	5 7	_	11	13	17	19	
		23		29	31		37		
	41	43	47			53		59	
	61		67		71	73		79	
		83		89			97		
	101	103	107	109		113			
	121		127		131		137	139	
		143		149	151		157		
		163	167	169		173		179	
	181		187		191	193	197	199	
				209	211				
	221	223	227	229		233		239	
	241		247		251	253	257		
		263		269	271		277		
	281	283		289		293		299	
		200	307		311	313	317	319	
	214	323	247	240	331	252	331	250	
	341		347	349		353	077	359	
	301	000	307	200	204	515	317	3/9	

Example: find_max.py

def find_max(nums):
 maximum = nums[0]
 for i in range(1, len(nums)):
 if nums[i] > maximum:
 maximum = nums[i]
 return maximum

ages = [20, 16, 22, 30, 17, 24] max_age = find_max(ages) # max_age will be 30 print('Maximum age: ' + str(max_age))

def find_max(nums):	_IIIdX.µy Variable	Value	
maximum = nums[0]			
if nums[i] > maximum:	maximum	30	
maximum = nums[i]	i	5	
-> return maximum	nums[i]	24	
ages = [20, 16, 22, 30, 17, 24] max_age = find_max(ages) # max_age print('Maximum age: ' + str(max_age)	e will be 30))		

Example: vowels.py def count_vowels(word): Variable Value vowels = 'aeiou' num vowels = 0 num vowels 1 for letter in word.lower(): letter d if letter in vowels: num_vowels += 1 return num_vowels word = 'Cider' print('The number of vowels in ' + word + ' is ' + str(count_vowels(word))) # will print 2

Example: vowels.py def count_vowels(word): Variable Value vowels = 'aeiou' num vowels = 0 num vowels 1 for letter in word.lower(): letter d if letter in vowels: **# False** num_vowels += 1 return num_vowels word = 'Cider' print('The number of vowels in ' + word + ' is ' + str(count_vowels(word))) # will print 2

A list of lists In Python, a list can contain objects of any type A list is an object. Therefore, a list can contain other lists! Ingeine there is a group of 4 students, and for each student there are 3 exam scores: scores = [[89, 85, 90], [78, 85, 72], [99, 86, 92], [82, (4), 79]] Daccess a particular score, two indices are needed: • First, which students grade is needed (0 through 3) • Second, which score of that student is desired (0 through 2). Example: scores[3][1] is fourth student's score on the second exam (which is 84)

Example: compute averages (v1) We want to write code that will compute the average score that students earned on each exam Will write more than one version of the program → But start simple In the first version we will "hard-code" several values (the number of students and the number of scores) in the program Then, generalize things a bit and use variables for these values

age = int(input('How old are you? '))	
-3(1() //	Modify this program to:
if age < 21:	1. Write milk only for
drink_type = 'milk'	poople vounger than the
else: dvink tuno = 'hoor':	
drink_type - beer;	legal drinking age in you
<pre>num_bottles = int(input('How many bottles of '</pre>	country
+ drink_type + ' do you have? '))	
for bottle in range(num bottles, -1, -1);	2 Make it count up from
if bottle > 1:	to the user input numb
<pre>print(str(bottle) + ' bottles of ' + drink_type +</pre>	
' on the wall!')	incrementing by 2
elif bottle == 1:	(e.g. 1, 3, 5)
<pre>print('1 bottle of ' + drink_type + ' on the wall!')</pre>	
else:	

