Computer Science Principles Computer Science
Principles
CHAPTER 4 – SEARCHING AND SORTING ALGORITHMS, SCALABILITY

Announcements

Reading: Read Chapter 4 of Conery

Acknowledgement: These slides are revised versions of slides prepared by Prof. Arthur Lee, Tony Mione, and Alex Kuhn for earlier CSE 101 classes. Some slides are based on Prof. Kevin McDonald at SBU CSE 101 lecture notes and the textbook by John Conery. (Changes Sides are revised versions of slides prepared by

Mione, and Alex Kuhn for earlier CSE 101 classes.

on Prof. Kevin McDonald at SBU CSE 101 lecture

k by John Conery.

Note that the sum of the sum of the sum of th

Example: the Luhn Algorithm

3/31
The Luhn algorithm checks if an account number (such as a credit card number)
is valid
It works like this:
1. Process each digit in turn, from right to left. The rightmost digit is treated as
1. is valid Example: the Luhn Algorithm

The Lubn algorithm checks if an account number (such as a credit card number)

it vorks like this:

the might belist is true to the sum is a multiple of its introduced digits are added as-is to

It works like this:

1. Process each digit in turn, from right to left. The rightmost digit is treated as being in position #1.

◦ Odd-positioned digits are added as-is to a running total.

◦ Even-positioned digits are doubled. If that doubled value is less than 10, add it to the running total. Otherwise, add the two digits individually to the running total.

Linear search The linear search function in IterationLab, isearch, is like Python's index method • Pass it a list and an item to search for • If the item is in the list, the function returns the location where it was found • If the item is not in the list, the function returns None Examples: 3/31/2020
from Search function in IterationLab, isearch, is like Python's index
thod
thod
the lien is in the list, the function returns the location where it was found
from FythonLabs.IterationLab import isearch
motes = [' notes = ['do', 're', 'me', 'fa', 'sol', 'la', 'ti'] print(isearch(notes, 'ti')) # returns 6 print(isearch(notes, 'ba')) # returns None (ion in IterationLab, isearch, is like Python's index

em to search for

t, the function returns the location where it was found

e list, the function returns **None**
 IterationLab import isearch
 IterationLab import ise 15

Insertion sort

The important property of the insertion sort algorithm: at any point in this algorithm, part of the list is already sorted

More specifically, the left-hand part of the list is the sorted part and the righthand part is still unsorted

- 1. The initial item to work on is at index 1
- 2. Pick up the current item
- 3. Scan the left-hand part backwards from that index until we find an item lower than the current item or we arrive at the front of the list, whichever comes first (The insertion sort algorithm: at any point in this

tis already sorted

the list is the sorted part and the right-

reduced

reduced at the list is the sorted part and the right-

reduced at the risk of the stress of the
- 4. Insert the current item back into the list at this location
- 5. The next item to work on is to the right of the original location of the item
- 6. Go back to step 2

Moving items in a list

In order to implement the steps in the body of the main loop we need to know: (C) ARTHUR LEE, THE SUPPOSE THE SUPPOSE OF THE SUPPOSE OF THE MIGHT AND THE MIGHT AND HOTEL IS A HOTEL OF THE MICHAEL AND HOTEL AND THE MICROSCOPE OF THE MICROSCOPE OF THE MICROSCOPE OF THE MICROSCOPE OF THE MICROSCOPE OF

◦ How to remove an item from the middle of a list

◦ How to insert an item into a list

Both operations are performed by methods of the list class

Call a.pop(i) to delete the item at location i in list a ◦ The method returns the item that was deleted

Call **a.insert(i, x)** to insert item x into the list **a** at location **i**

Some examples of these methods are on the next slide

53

Moving items in a list Suppose we had a random list of seven chemical elements (e.g., oxygen, hydrogen, etc.): a = RandomList(7, 'elements') a: ['Co', 'Tm', 'U', 'Hs', 'F', 'Rn', 'Y'] Now let's remove the item at index 4 and save it in x: $x = a.pop(4)$ # x will contain 'F' The list a will become: ['Co', 'Tm', 'U', 'Hs', 'Rn', 'Y'] Let's insert the element at index 2: a.insert $(2, x)$ The list a will become: ['Co', 'Tm', 'F', 'U', 'Hs', 'Rn', 'Y'] (C) ARTHUR LIST

Solid Arthur China (E.B., oxygen, hydrogen,

Lements)

1, 'F', 'Rn', 'Y'

2, at index 4 and save it in x:

contain 'F'

index 2:

Is', 'Rn', 'Y']

index 2:

Is', 'Rn', 'Y']

Contains the same contained in

Example: leapyear.py

 $year = int(input('Enter a year:'))$ if year < 1582: print('You must enter a year >= 1582.') else: if ((year $\%$ 4 == 0) and (year $\%$ 100 != 0)) or $(year % 400 == 0)$: print('That is a leap year.') else: print('That is NOT a leap year.') $(D)(PdT, D)$
 $PdT = PdT$

• Example leap years: 2012, 2000, 2400

• Not leap years: 2003, 1900

Scalability The fact that the number of comparisons grows with the square of the list size may not seem important ◦ For small-to-moderate-sized lists it's not a big deal ◦ But execution time will start to be a factor for larger lists The ability of an algorithm to solve increasingly larger problems is an attribute known as scalability ◦ We say that an efficient algorithm scales well for larger inputs We'll revisit this idea after looking at more sophisticated algorithms a future lecture (ber of comparisons grows with the square of the list

ortant

e-sized lists it's not a big deal

III start to be a factor for larger lists

thm to solve increasingly larger problems is an
 alability

int algorithm scale

79

Selection sort

The selection sort algorithm is another $O(n^2)$ iteration-based algorithm for \vert sorting a list of values: First the is another $O(n^2)$ iteration-based algorithm for

Elue. Swap it (exchange it) with the first value in the list.

Elest value. Swap it with the second value in the list.

Elest value. Swap it with the sincond val

- 1. Find the smallest value. Swap it (exchange it) with the first value in the list.
- 2. Find the second-smallest value. Swap it with the second value in the list.
- 3. Find the third-smallest value. Swap it with the third value in the list.
- 4. Repeat finding the next-smallest value and swapping it into the correct position until the list is sorted.

Let's see some examples of how this algorithm works.

Be sure to check out visualgo.net/en/sorting

Selection sort: example #1 Selection sort: example #1
 $\frac{16954}{76954}$ swapped 1 and 7
 46957 swapped 4 and 7
 45967 swapped 5 and 6
 45697 swapped 7 and 9
 $\frac{1}{456979}$ swapped 7 and 9

ventually, only the largest value will remain

Put, (C) ARTHUR LEE, $\frac{1}{2}$

ed 1 and 7

ed 5 and 6

ed 6 and 9

ed 7 and 9

gest value will remain

ghtmost position, so we don't need to do anything with

substant core in the sum of the contract of the contract of the co

Eventually, only the largest value will remain

it

Selection sort Perhaps you noticed that during execution of the algorithm, the list is divided into two parts: ◦ the sorted part (green) ◦ the yet-to-be-sorted part (black) Also you may have noticed that the largest element winds up in the rightmost spot without any additional work Think about that for a moment. Suppose we have 10 elements in our list. ◦ Once we have moved the 9 smallest elements into their final positions, the 10th (largest) value must be in the rightmost position ◦ This has a small implication in the implementation (C) ARTHUR CHAIR C

83 and the set of the

85 and the set of the

Example: lucky.py

def is_lucky_number(num): $\label{eq:2} \begin{array}{ll} \mbox{Gamma: \mathbb{R}^2} \cup \mbox{Lip} \$ return False $\label{eq:2} \begin{array}{ll} \mbox{Example:}\ \rule[-1.5ex]{0pt}{3pt} \mbox{[Wol]} & \mbox{[Wol]} & \mbox{[Wol]} \cr \mbox{[Wol]} & \mbox{[Wol]}$ $\begin{array}{lll} \text{ample:} & & \text{3/31/2020} \\ \text{in the case} & & \text{3/31/2020} \\ \text{in the case} & & \text{3/31/2020} \\ \text{in the case} & & \text{410} & \text{42} \\ \text{in the case} & & \text{410} & \text{42} \\ \text{in the case} & & \text{43} & \text{44} \\ \text{in the case} & & \text{45} & \text{46} \\ \text{in the case} & & \text{46} & \text{47} \\ \text{in the case} & & \text{48} & \text{49} \\ \text{$ nple: lucky.py

nucky_number(num):

nucky_number(num):

turn 6= 0:

turn False

e num > 0:

num % 10 == 4 or num % 10 == 7:

num //= 10 # discard the digit

se:

return False

rn True else: return False return True $(ky. Dy$
 $= r$ (aum):
 $\frac{4 \text{ or } \text{num } \% \cdot 10 == 7:}{4 \text{ iscard the digit}}$
 $\frac{1}{2}$
 $\frac{1}{2}$
 $\frac{1}{2}$

See lucky.py for fully commented code and additional explanation

87 and the state of the state of

