
4/16/2020

1

Introduction to
Computational and
Algorithmic Thinking
CHAPTER 5 – DIVIDE AND CONQUER ALGORITHMS. RECURSION

Announcements
This lecture: Divide and conquer algorithms. Recursion

Reading: Read Chapter 5 of Conery

Acknowledgement: Some of this lecture slides are based on CSE 101 lecture notes by Prof. Kevin
McDonald at SBU

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 2

1

2

4/16/2020

2

Divide and Conquer
•The strategy for the linear search and insertion sort algorithms was the same: iterate over every
location in the list and perform some operation

•We will now look at a different strategy: divide and conquer
• The idea: break a problem into smaller sub-problems and solve the smaller sub-problems
• Sub-problems are chosen in such a way that their solutions can be combined to provide the solution to

the original problem
•It may not seem like that big a deal, but the improvement can be dramatic, as we will see

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 3

Example: Searching a Dictionary
•To get a general sense of how the divide-and-conquer strategy improves search, consider how
people find information in a (physical) phone book or dictionary

•Suppose you want to find “janissary” in a dictionary
• Open the book near the middle
• The heading on the top left page is “kiwi”, so move back a small number of pages
• Here you find “hypotenuse”, so move forward
• Find “ichthyology”, move forward again

•The number of pages you move gets smaller (or at least adjusts in response to the words you
find)

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 4

3

4

4/16/2020

3

Example: Searching a Dictionary
•A more detailed specification of this process:

1. The goal is to search for a word w in a region of the book.
2. The initial region is the entire book.
3. At each step, pick a word x in the middle of the current region.
4. There are now two smaller regions: the part before x and the part after x.
5. If w comes before x, repeat the search on the region before x. Otherwise, search the region

following x (go back to step 3).
•Note: at first a “region” is a group of pages, but eventually a region is a set of words on a single
page

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 5

A Note About Data Organization
•An important note: an efficient search depends on having the data organized in some fashion
•If books in a library are scattered all over the place we have to do an iterative search

• Start at one end of the room and progress toward the other
•If books are sorted or carefully cataloged we can try a more efficient method that exploits the
sorted nature of the books

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 6

5

6

4/16/2020

4

Binary Search: Overview
•The binary search algorithm uses the divide-and-conquer strategy to search through a list
•The list must be sorted for this algorithm to work properly

• The “zeroing in” strategy for looking up a word in the dictionary won’t work if the words are not in
alphabetical order

• Similarly, binary search will not work for a list of values unless the list is sorted
•To search a list of n items, first look at the item in location n/2
•If this is the item we want, then the search has ended successfully
•Otherwise, search either the region from 1 to (n/2)-1 or the region from (n/2)+1 to n

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 7

Binary Search: Example
•Example: searching for 46 in a sorted list of 15 numbers:

•Note how the search moves backward and forward, quickly finding the target element

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 8

7

8

4/16/2020

5

Binary Search: the Details
•The algorithm uses two variables to keep track of the boundaries of the region to search

• lower: the index one position below the leftmost item in the region
• upper: the index one position above the rightmost item in the region

•Initial values when searching a list of n items:
lower = -1
upper = n

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 9

Binary Search: the Details
•The algorithm is based on an iteration (loop) that keeps making the search region smaller and
smaller
• The initial region is the complete list
• The next one is either the upper half or lower half
• The one after that is one quarter, then one eighth, then…

•The heart of the algorithm contains these operations:
• Set mid to a location halfway between lower and upper:

mid = (lower + upper) // 2

• If the item is at this location, then we’re done:
if a[mid] == x:

return mid

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 10

9

10

4/16/2020

6

Binary Search: the Details
•The heart of the algorithm (continued):

• Otherwise, move one of the “brackets” to the current mid-point for the next iteration:
if x < mid:

upper = mid
else:

lower = mid

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 11

Binary Search: the Details
•Let’s revisit our example from earlier. The star in the figure shows how the value of mid changes
with each iteration

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 12

11

12

4/16/2020

7

Binary Search: the Details
•How do we handle the case when the target item is not in the list?

• We have to add a condition that makes sure that lower is still to the left of upper
• If the upper and lower pointers meet each other, this means that the search region has no elements

in it – the search has failed
•We can now write the complete bsearch function, which returns:

• The index of the target item in the list, when the search is successful, or
• None, if the target item is not in the list

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 13

Completed bsearch() Function
def bsearch(a, x):

lower = -1
upper = len(a)
while upper > lower + 1:

mid = (lower + upper) // 2
if a[mid] == x:

return mid
if x < a[mid]:

upper = mid
else:

lower = mid
return None

•See bsearch_tests.py for fully commented code

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 14

13

14

4/16/2020

8

Trace Execution: bsearch()
a: [1, 2, 3, 5, 6, 8, 9, 11, 14, 17]
index: 0 1 2 3 4 5 6 7 8 9
def bsearch(a, x):

lower = -1
upper = len(a)
while upper > lower + 1:

mid = (lower + upper) // 2
if a[mid] == x:

return mid
if x < a[mid]:

upper = mid
else:

lower = mid
return None

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 15

Trace Execution: bsearch()
a: [1, 2, 3, 5, 6, 8, 9, 11, 14, 17]
index: 0 1 2 3 4 5 6 7 8 9
def bsearch(a, x):

lower = -1
upper = len(a)
while upper > lower + 1:

mid = (lower + upper) // 2
if a[mid] == x:

return mid
if x < a[mid]:

upper = mid
else:

lower = mid
return None

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 16

15

16

4/16/2020

9

Trace Execution: bsearch()
a: [1, 2, 3, 5, 6, 8, 9, 11, 14, 17]
index: 0 1 2 3 4 5 6 7 8 9
def bsearch(a, x):

lower = -1
upper = len(a)
while upper > lower + 1:

mid = (lower + upper) // 2
if a[mid] == x:

return mid
if x < a[mid]:

upper = mid
else:

lower = mid
return None

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 17

Trace Execution: bsearch()
a: [1, 2, 3, 5, 6, 8, 9, 11, 14, 17]
index: 0 1 2 3 4 5 6 7 8 9
def bsearch(a, x):

lower = -1
upper = len(a)
while upper > lower + 1: # True

mid = (lower + upper) // 2
if a[mid] == x:

return mid
if x < a[mid]:

upper = mid
else:

lower = mid
return None

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 18

17

18

4/16/2020

10

Trace Execution: bsearch()
a: [1, 2, 3, 5, 6, 8, 9, 11, 14, 17]
index: 0 1 2 3 4 5 6 7 8 9
def bsearch(a, x):

lower = -1
upper = len(a)
while upper > lower + 1:

mid = (lower + upper) // 2
if a[mid] == x:

return mid
if x < a[mid]:

upper = mid
else:

lower = mid
return None

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 19

Trace Execution: bsearch()
a: [1, 2, 3, 5, 6, 8, 9, 11, 14, 17]
index: 0 1 2 3 4 5 6 7 8 9
def bsearch(a, x):

lower = -1
upper = len(a)
while upper > lower + 1:

mid = (lower + upper) // 2
if a[mid] == x: # False

return mid
if x < a[mid]:

upper = mid
else:

lower = mid
return None

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 20

19

20

4/16/2020

11

Trace Execution: bsearch()
a: [1, 2, 3, 5, 6, 8, 9, 11, 14, 17]
index: 0 1 2 3 4 5 6 7 8 9
def bsearch(a, x):

lower = -1
upper = len(a)
while upper > lower + 1:

mid = (lower + upper) // 2
if a[mid] == x:

return mid
if x < a[mid]: # False

upper = mid
else:

lower = mid
return None

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 21

Trace Execution: bsearch()
a: 1, 2, 3, 5, [6, 8, 9, 11, 14, 17]
index: 0 1 2 3 4 5 6 7 8 9
def bsearch(a, x):

lower = -1
upper = len(a)
while upper > lower + 1:

mid = (lower + upper) // 2
if a[mid] == x:

return mid
if x < a[mid]:

upper = mid
else:

lower = mid
return None

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 22

21

22

4/16/2020

12

Trace Execution: bsearch()
a: 1, 2, 3, 5, [6, 8, 9, 11, 14, 17]
index: 0 1 2 3 4 5 6 7 8 9
def bsearch(a, x):

lower = -1
upper = len(a)
while upper > lower + 1: # True

mid = (lower + upper) // 2
if a[mid] == x:

return mid
if x < a[mid]:

upper = mid
else:

lower = mid
return None

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 23

Trace Execution: bsearch()
a: 1, 2, 3, 5, [6, 8, 9, 11, 14, 17]
index: 0 1 2 3 4 5 6 7 8 9
def bsearch(a, x):

lower = -1
upper = len(a)
while upper > lower + 1:

mid = (lower + upper) // 2
if a[mid] == x:

return mid
if x < a[mid]:

upper = mid
else:

lower = mid
return None

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 24

23

24

4/16/2020

13

Trace Execution: bsearch()
a: 1, 2, 3, 5, [6, 8, 9, 11, 14, 17]
index: 0 1 2 3 4 5 6 7 8 9
def bsearch(a, x):

lower = -1
upper = len(a)
while upper > lower + 1:

mid = (lower + upper) // 2
if a[mid] == x: # False

return mid
if x < a[mid]:

upper = mid
else:

lower = mid
return None

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 25

Trace Execution: bsearch()
a: 1, 2, 3, 5, [6, 8, 9, 11, 14, 17]
index: 0 1 2 3 4 5 6 7 8 9
def bsearch(a, x):

lower = -1
upper = len(a)
while upper > lower + 1:

mid = (lower + upper) // 2
if a[mid] == x:

return mid
if x < a[mid]: # True

upper = mid
else:

lower = mid
return None

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 26

25

26

4/16/2020

14

Trace Execution: bsearch()
a: 1, 2, 3, 5, [6, 8, 9, 11], 14, 17]
index: 0 1 2 3 4 5 6 7 8 9
def bsearch(a, x):

lower = -1
upper = len(a)
while upper > lower + 1:

mid = (lower + upper) // 2
if a[mid] == x:

return mid
if x < a[mid]:

upper = mid
else:

lower = mid
return None

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 27

Trace Execution: bsearch()
a: 1, 2, 3, 5, [6, 8, 9, 11], 14, 17]
index: 0 1 2 3 4 5 6 7 8 9
def bsearch(a, x):

lower = -1
upper = len(a)
while upper > lower + 1: # True

mid = (lower + upper) // 2
if a[mid] == x:

return mid
if x < a[mid]:

upper = mid
else:

lower = mid
return None

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 28

27

28

4/16/2020

15

Trace Execution: bsearch()
a: 1, 2, 3, 5, [6, 8, 9, 11], 14, 17]
index: 0 1 2 3 4 5 6 7 8 9
def bsearch(a, x):

lower = -1
upper = len(a)
while upper > lower + 1:

mid = (lower + upper) // 2
if a[mid] == x:

return mid
if x < a[mid]:

upper = mid
else:

lower = mid
return None

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 29

Trace Execution: bsearch()
a: 1, 2, 3, 5, [6, 8, 9, 11], 14, 17]
index: 0 1 2 3 4 5 6 7 8 9
def bsearch(a, x):

lower = -1
upper = len(a)
while upper > lower + 1:

mid = (lower + upper) // 2
if a[mid] == x: # True

return mid
if x < a[mid]:

upper = mid
else:

lower = mid
return None

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 30

29

30

4/16/2020

16

Trace Execution: bsearch()
a: 1, 2, 3, 5, [6, 8, 9, 11], 14, 17]
index: 0 1 2 3 4 5 6 7 8 9
def bsearch(a, x):

lower = -1
upper = len(a)
while upper > lower + 1:

mid = (lower + upper) // 2
if a[mid] == x:

return mid
if x < a[mid]:

upper = mid
else:

lower = mid
return None

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 31

Completed bsearch() Function
In the PythonLabs module called RecursionLab there is a function named
print_bsearch_brackets that will let us visualize how the lower and upper pointers
change as the search progresses
The call to this function goes near the top of the loop
See the code on the next slide

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 32

31

32

4/16/2020

17

bsearch() with Print-outs
def bsearch(a, x):

lower = -1
upper = len(a)
while upper > lower + 1:

mid = (lower + upper) // 2
print_bsearch_brackets(a,lower,mid,upper)
if a[mid] == x:

return mid
if x < a[mid]:

upper = mid
else:

lower = mid
return None

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 33

bsearch() Example
•list: [5, 12, 16, 40, 58, 62, 72, 84, 88, 90]
•target element: 72
•In the sample visualizations below, the brackets indicate the current
•search region, and * indicates the middle element

[5 12 16 40 *58 62 72 84 88 90]
5 12 16 40 58 [62 72 *84 88 90]
5 12 16 40 58 *62 72] 84 88 90
5 12 16 40 58 62 [72] 84 88 90

•Result: 6

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 34

33

34

4/16/2020

18

bsearch() Example
•list: [5, 12, 16, 40, 58, 62, 72, 84, 88, 90]
•target element: 65 (not present in list)
•In the sample visualizations below, the brackets indicate the current search region, and *
indicates the middle element

[5 12 16 40 *58 62 72 84 88 90]
5 12 16 40 58 [62 72 *84 88 90]
5 12 16 40 58 *62 72] 84 88 90

•Result: None

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 35

Cutting the Problem Down to Size
•It should be clear why we say that the binary search algorithm uses a divide-and-conquer
strategy
• The problem is to find an item within a given range
• At each step, the problem is split into two equal sub-problems
• Focus then turns to one sub-problem for the next step

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 36

35

36

4/16/2020

19

Number of Comparisons
•The number of iterations made by this algorithm when it searches a list containing n items is
roughly log2 n

•To see why, consider the question from the other direction
• Let’s start with a list containing 1 item. Suppose each step of an iteration doubles the size of the list
• After n steps, we will have 2n items in the list

•By definition of logarithm, if x=2y, then y=log2 x
•During searching we’re reducing a region of size n down to a region of size 1
•A successful search might return after the first comparison
•An unsuccessful search does all log2 n + 1 comparisons
•Exampe: 8->4->2->1, or 4 comparisons (note: log2 8 = 3)

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 37

Searching Long Lists
•Divide-and-conquer might seem like a lot of extra work for such a
simple problem (searching)

•For large lists, however, that work leads to a very efficient search

•We would need at most 30 comparisons to find something in a
list of 1 billion items

•The worst case for linear search would be 1 billion comparisons!

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 38

37

38

4/16/2020

20

Divide and Conquer Sorting
•The divide-and-conquer strategy used to make a more efficient search algorithm can also be
applied to sorting

•Two well-known sorting algorithms:
• Merge Sort: sort subgroups of size 2, merge them into sorted groups of size 4, merge those into sorted

groups of size 8, and so on
• Quicksort: divide a list into big values and small values, then sort each part

•Let’s first explore merge sort and see how it can be implemented in Python

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 39

Merge Sort
•The merge sort algorithm works from “the bottom up”

• Start by solving the smallest pieces of the main problem
• Keep combining their results into larger solutions
• Eventually the original problem will be solved

•Example: sorting playing cards
• Divide the cards into groups of two
• Sort each group, putting the smaller of the two on the top
• Merge groups of two into groups of four
• Merge groups of four into groups of eight
• and so on ...

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 40

39

40

4/16/2020

21

Merge Sort: Example
•Let’s try an example of merge sort with 7 playing cards:

2 Q J 7 A 10 5 Original list

2 Q 7 J 10 A 5 Sorted pairs

2 7 J Q 5 10 A Merged pairs into sorted groups of 3 or 4

2 5 7 10 J Q A Merged smaller groups into 1 large sorted group

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 41

Merge Sort
•What makes this method more effective than simple insertion sort?

• Merging two piles is a very simple operation
• Only need to look at the two cards currently on the top of each pile
• No need to look deeper into either group

•In our example, we had these two piles at one point:
• [2 7 J Q] and [5 10 A]
• Compare 2 with 5, pick up the 2
• Compare 5 with 7, pick up the 5
• Compare 7 with 10, pick up the 7
• and so on ...

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 42

41

42

4/16/2020

22

Merge Sort Visualization
•See msort_visualization.py for an animation of merge sort
•Also see visualgo.net/en/sorting
•Watching a few animations of merge sort in action will give you a stronger sense of how the
algorithm sorts a list of values

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 43

Implementing Merge Sort
•We will now see how to implement merge sort as a function called msort
•msort depends on two helper functions:

• merge, which merges two sorted lists into one. This function is already implemented in the built-in
heapq module in Python.

• merge_groups, which calls merge and tells it exactly which sub-lists of the original list to merge

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 44

43

44

4/16/2020

23

Implementing Merge Sort (next)
•Let’s look at an example of the merge function so we understand how it works

import heapq
list1 = [1, 4, 6, 8]
list2 = [2, 5, 7, 9, 10, 13, 19]
merged_list = heapq.merge(list1, list2)

•merged_list will be:
[1, 2, 4, 5, 6, 7, 8, 9, 10, 13, 19]

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 45

The merge_groups Function
•A helper function which we will write ourselves is merge_groups
•The merge_groups function takes two arguments: the list and the size of a group,
group_size (e.g., 2, 4, 8, ...)
• It takes adjacent groups of sorted values two at a time and merges them into single groups
• For example, if the group size is 2, this means that merge_groups will merge adjacent pairs into

quartets
•The function depends on Python’s slicing notation, which works with lists and strings

• Code like nums[i:j] means “create a new list containing elements i through j-1 of nums”

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 46

45

46

4/16/2020

24

Slicing Examples
•Example of slicing:

nums = [23, 6, 21, 45, 82, 4, 10]
0 1 2 3 4 5 6

print(nums[2:6])

•Output: [21, 45, 82, 4]
•Slicing notation can be used to change the contents of a list:

nums[1:3] = [11, 22, 33]

•nums becomes:
[23, 11, 22, 33, 45, 82, 4, 10]

•Note: 6 and 21 have been replaced with the numbers in red

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 47

Slicing Examples 2
•Example of slicing:

names = ['Abe', 'Barbara', 'Chris’, 'Dave', 'Erin', 'Frank', 'Harry']
print(names[2:6])

•Output: ['Chris', 'Dave', 'Erin', 'Frank']
•Slicing notation can be used to change the contents of a list:

names[1:3] = ['Mike', 'Nathan', 'Opal']

•names becomes:
['Abe', 'Mike', 'Nathan', 'Opal', 'Dave', 'Erin’, 'Frank', 'Harry']

•Note: 'Barbara' and 'Chris' have been replaced with the words in red

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 48

47

48

4/16/2020

25

The merge_groups Function
•To understand how merge_groups needs to work, consider the task of merging two quartets
into one octet (“quartets” means group_size = 4)
• The two quartets are adjacent to each other in the list
• Generally, there are several or many such pairs of quartets we need to merge together, and we have to

merge all such pairs of quartets into octets
•We need variables to tell us where each pair of quartets begins
•Call these variables i and j

• i is the starting index of the first quartet
• j is the starting index of the second quartet

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 49

The merge_groups Function
•After merging those quartets together, we need to move to the next two quartets
•They can be found at indexes i+8 and j+8 since we need to skip over the octet we just created
•Initially, i = 0 and j = 4
•For the second iteration, i = 8 and j = 12

• Note that j = i + 4 which means that j = i + group_size

•Next, i = 16, j = 20 (again, j = i + group_size)
•In general, after merging two groups together,

• i will increase by 2 × group_size and
• j will simply become j = i + group_size

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 50

49

50

4/16/2020

26

The merge_groups Function
•Now that we have worked out this logic, we can implement the merge_groups function:

def merge_groups(a, group_size):
for i in range(0, len(a), 2*group_size):

j = i + group_size
k = j + group_size
a[i:k] = list(heapq.merge(a[i:j], a[j:k]))

•The for-loop doubles the group size until the list is just one large group
•See merge_groups_tests.py for examples of this function in action

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 51

Trace Execution: merge_groups
def merge_groups(a, group_size):

for i in range(0, len(a), 2*group_size):
j = i + group_size
k = j + group_size
a[i:k] = list(heapq.merge(a[i:j], a[j:k]))

•nums: [8, 6, 7, 5, 3, 1, 2, 4]
•Function call: merge_groups(nums, 1)
•a: [8, 6, 7, 5, 3, 1, 2, 4] group_size = 1
•The loop will iterate as: i = 0, 2, 4, 6

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 52

51

52

4/16/2020

27

Trace Execution: merge_groups
def merge_groups(a, group_size):

for i in range(0, len(a), 2*group_size):
j = i + group_size
k = j + group_size
a[i:k] = list(heapq.merge(a[i:j], a[j:k]))

•nums: [8, 6, 7, 5, 3, 1, 2, 4]
•Function call: merge_groups(nums, 1)
•a: [8, 6, 7, 5, 3, 1, 2, 4] group_size = 1
•i = 0
•j = i + 1 = 1
•k = j + 1 = 2
•a[0:2] = merge(a[0:1], a[1:2])
•a: [6, 8, 7, 5, 3, 1, 2, 4]

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 53

Trace Execution: merge_groups
def merge_groups(a, group_size):

for i in range(0, len(a), 2*group_size):
j = i + group_size
k = j + group_size
a[i:k] = list(heapq.merge(a[i:j], a[j:k]))

•nums: [8, 6, 7, 5, 3, 1, 2, 4]
•Function call: merge_groups(nums, 1)
•a: [6, 8, 7, 5, 3, 1, 2, 4] group_size = 1
•i = 2
•j = i + 1 = 3
•k = j + 1 = 4
•a[2:4] = merge(a[2:3], a[3:4])
•a: [6, 8, 5, 7, 3, 1, 2, 4]

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 54

53

54

4/16/2020

28

Trace Execution: merge_groups
def merge_groups(a, group_size):

for i in range(0, len(a), 2*group_size):
j = i + group_size
k = j + group_size
a[i:k] = list(heapq.merge(a[i:j], a[j:k]))

•nums: [8, 6, 7, 5, 3, 1, 2, 4]
•Function call: merge_groups(nums, 1)
•a: [6, 8, 5, 7, 3, 1, 2, 4] group_size = 1
•i = 4
•j = i + 1 = 5
•k = j + 1 = 6
•a[4:6] = merge(a[4:5], a[5:6])
•a: [6, 8, 5, 7, 1, 3, 2, 4]

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 55

Trace Execution: merge_groups
def merge_groups(a, group_size):

for i in range(0, len(a), 2*group_size):
j = i + group_size
k = j + group_size
a[i:k] = list(heapq.merge(a[i:j], a[j:k]))

•nums: [8, 6, 7, 5, 3, 1, 2, 4]
•Function call: merge_groups(nums, 1)
•a: [6, 8, 5, 7, 1, 3, 2, 4] group_size = 1
•i = 6
•j = i + 1 = 7
•k = j + 1 = 8
•a[6:8] = merge(a[6:7], a[7:8])
•a: [6, 8, 5, 7, 1, 3, 2, 4]

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 56

55

56

4/16/2020

29

Trace Execution: merge_groups
def merge_groups(a, group_size):

for i in range(0, len(a), 2*group_size):
j = i + group_size
k = j + group_size
a[i:k] = list(heapq.merge(a[i:j], a[j:k]))

•nums: [8, 6, 7, 5, 3, 1, 2, 4]
•Function call: merge_groups(nums, 2)
•a: [6, 8, 5, 7, 1, 3, 2, 4] group_size = 2
•The loop will iterate as: i = 0, 4

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 57

Trace Execution: merge_groups
def merge_groups(a, group_size):

for i in range(0, len(a), 2*group_size):
j = i + group_size
k = j + group_size
a[i:k] = list(heapq.merge(a[i:j], a[j:k]))

nums: [8, 6, 7, 5, 3, 1, 2, 4]
Function call: merge_groups(nums, 2)
a: [6, 8, 5, 7, 1, 3, 2, 4] group_size = 2
i = 0
j = i + 2 = 2
k = j + 2 = 4
a[0:4] = merge(a[0:2], a[2:4])
a: [5, 6, 7, 8, 1, 3, 2, 4]

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 58

57

58

4/16/2020

30

Trace Execution: merge_groups
def merge_groups(a, group_size):

for i in range(0, len(a), 2*group_size):
j = i + group_size
k = j + group_size
a[i:k] = list(heapq.merge(a[i:j], a[j:k]))

•nums: [8, 6, 7, 5, 3, 1, 2, 4]
•Function call: merge_groups(nums, 2)
•a: [5, 6, 7, 8, 1, 3, 2, 4] group_size = 2
•i = 4
•j = i + 2 = 6
•k = j + 2 = 8
•a[4:8] = merge(a[4:6], a[6:8])
•a: [5, 6, 7, 8, 1, 2, 3, 4]

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 59

Trace Execution: merge_groups
def merge_groups(a, group_size):

for i in range(0, len(a), 2*group_size):
j = i + group_size
k = j + group_size
a[i:k] = list(heapq.merge(a[i:j], a[j:k]))

•nums: [8, 6, 7, 5, 3, 1, 2, 4]
•Function call: merge_groups(nums, 4)
•a: [5, 6, 7, 8, 1, 2, 3, 4] group_size = 4
•The loop will iterate as: i = 0, 8 (iterate once only)

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 60

59

60

4/16/2020

31

Trace Execution: merge_groups
def merge_groups(a, group_size):

for i in range(0, len(a), 2*group_size):
j = i + group_size
k = j + group_size
a[i:k] = list(heapq.merge(a[i:j], a[j:k]))

•nums: [8, 6, 7, 5, 3, 1, 2, 4]
Function call: merge_groups(nums, 4)
a: [5, 6, 7, 8, 1, 2, 3, 4] group_size = 4
i = 0
j = i + 4 = 4
k = j + 4 = 8
a[0:8] = merge(a[0:4], a[4:8])
a: [1, 2, 3, 4, 5, 6, 7, 8]

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 61

Exercise: write merge Function
•Our merge_groups function uses merge from the heapq module
•Let’s write our own merge function

• It takes two parameters: list u and list v, both are sorted in increasing order
• It returns a sorted list containing all the elements in u and v

•Write a main function that tests merge that you write

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 62

61

62

4/16/2020

32

Completed msort Function
•All that remains now is to write msort, which will be straightforward with the help of
merge_groups which in turn uses merge

•The main thing that msort needs to do is tell merge_groups how large each group is. But
that’s easy:
• First, we take single elements and merge them into sorted pairs
• Then, merge all the sorted pairs into sorted quartets
• Next, merge all the sorted quartets into sorted octets
• and so on ...

•Two implementations of msort (make sure you study these two)
• msort.py using heapq.merge
• msort2.py using our own merge (see the previous slide)

•If you want to visualize the progress of msort, you can call a function from RecursionLab called
print_msort_brackets (continued on the next slides)

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 63

Completed msort Function
from PythonLabs.RecursionLab import
print_msort_brackets
def msort(a):

size = 1
while size < len(a):

print_msort_brackets(a, size) # optional
merge_groups(a, size)
size = size * 2
print_msort_brackets(a, len(a)) # optional

•See msort_tests.py for a test run of the msort function

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 64

63

64

4/16/2020

33

Completed msort Function
Example run of msort, with print_msort_brackets:

nums:
[33, 93, 7, 15, 50, 11, 65, 43]
[33] [93] [7] [15] [50] [11] [65] [43]
[33 93] [7 15] [11 50] [43 65]
[7 15 33 93] [11 43 50 65]
[7 11 15 33 43 50 65 93]

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 65

Comparisons in Merge Sort
•To completely sort a list with n items requires log2 n iterations

• Why? The group size starts at 1 and doubles with each iteration. The group size equals or exceeds n
after log2 n rounds of doubling

•During each iteration of msort there are at most n comparisons. Why?
• Comparisons occur in the built-in merge method
• It compares values at the front of each group
• It may have to work all the way to the end of each group, but might stop early
• So, the total number of comparisons is roughly n log2 n

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 66

65

66

4/16/2020

34

Scalability of Merge Sort
•So, merge sort is a O(nlog2 n) algorithm
•Is the new formula that much better than the comparisons made by insertion sort?
•Not that big of a difference for small lists
•But as the length of the list increases, the
savings start to add up

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 67

Recursion
•An algorithm that uses divide and conquer can be written using iteration or recursion
•A recursive solution to a problem features “self-similarity”, meaning that a function that solves a
problem calls itself

•You actually already have familiarity with this concept
• Consider the factorial operation in mathematics
• n! = n x (n-1)! for integers n≥1, where 0! = 1
• Note how factorial is defined in terms of itself (i.e., the ! Symbol appears on both sides of the equals

sign)
• This is a recursive definition of factorial
• The simplest case of a recursive definition is called the base case

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 68

67

68

4/16/2020

35

Recursion Example: Factorial
•Writing a recursive Python function that implements factorial is very straightforward
•We need to define both the recursive part (which is when the factorial function calls itself), and
the base case
def factorial(n):

if n == 0: # base case
return 1

else:
return n * factorial(n-1)

•See recursion_examples.py for code for many of the example recursive functions from these
notes

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 69

Recursion
•All recursive functions have the following characteristics:

• One or more base cases (the simplest cases) are used to stop recursion
• One or more a recursive calls that reduce the original problem in size, bringing it increasingly closer to a

base case until it becomes that case
• A recursive call can result in many more recursive calls, because the method keeps on dividing a sub-

problem into new sub-problems that are of smaller size than the original
• These sub-problems are of the same nature as the original

•Please note: solutions can be recursive, not problems!

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 70

69

70

4/16/2020

36

Trace: factorial(4)

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 71

Trace: factorial(4)

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 72

71

72

4/16/2020

37

A Disclaimer
•The true benefit of recursive thinking is not realized until one starts trying to solve challenging
problems that are more complicated than what we will explore in CSE 101

•Some (but not all) of the problems described in these lecture notes would be better solved using
iterative, non-recursive functions
• One notable exception is sorting, which can be solved efficiently using recursive algorithms like merge

sort or Quicksort
•The purpose of these examples, therefore, is to help you understand how to think recursively
when solving problems, not necessarily how to solve the stated problems in the most efficient
manner

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 73

Example: Fibonacci Numbers
•Suppose we have one pair of rabbits (male and female) at the beginning of a year
•Rabbit pairs are not fertile during their first month of life but thereafter give birth to one new
male and female pair at the end of every month

•Also, these are immortal rabbits and never die

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 74

73

74

4/16/2020

38

Example: Fibonacci Numbers
•So we can now compute how many rabbit pairs will be alive at the end of month k:

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 75

Example: Fibonacci Numbers
•At the start of the year (after 0 months), we have F0 = 1 pair of rabbits
•At the end of the first month we still have only F1 = 1 pair of rabbits
•At the end of k months there will be Fk = Fk-1 + Fk-2 pairs of rabbits

• Fk-1 is how many rabbits were alive the previous month
• Fk-2 is how many rabbits were alive two months ago, which equals how many rabbit will be born in

month k
•By now you have probably guessed that F is the Fibonacci sequence (1, 1, 2, 3, 5, 8, 13, 21,…)
•Let’s see a function that returns the nth Fibonacci number

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 76

75

76

4/16/2020

39

Example: Fibonacci Numbers
def fib(n):

if n == 0 or n == 1: # two base cases
return 1

return fib(n - 1) + fib(n - 2)

•Examples:
fib(0) = 1
fib(1) = 1
fib(2) = fib(1) + fib(0) = 1 + 1 = 2
fib(3) = fib(2) + fib(1) = 2 + 1 = 3
fib(4) = fib(3) + fib(2) = 3 + 2 = 5

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 77

See recursion_examples.py

Trace: fib(5)

•This call tree diagram illustrates how the initial call to fib(n) generates a large number of
recursive calls, even for a small value for n

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 78

77

78

4/16/2020

40

Recursive Binary Search
•For recursive binary search (rsearch), the idea is basically the same as iterative binary search
(bsearch, page 14)

•But, the while-loop is replaced with a recursive call to the function
•The algorithm checks the middle element to see if it equals the target
•If not, the function calls itself on the first half or second half, depending on whether the middle
element is greater than or less than the target (respectively)

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 79

Completed rsearch Function
def rsearch(a, x, lower, upper):

if upper == lower + 1:
return None

mid = (lower + upper) // 2
if a[mid] == x:

return mid
if x < a[mid]:

return rsearch(a, x, lower, mid)
else:

return rsearch(a, x, mid, upper)

•See rsearch_tests.py

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 80

79

80

4/16/2020

41

Binary Search Algorithms

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 81

Iterative version:

def bsearch(a, x):
lower = -1
upper = len(a)
while upper > lower + 1:

mid = (lower + upper) // 2
if a[mid] == x:

return mid
if x < a[mid]:

upper = mid
else:

lower = mid
return None

Recursive version:

def rsearch(a, x, lower, upper):
if upper == lower + 1:

return None
mid = (lower + upper) // 2
if a[mid] == x:

return mid
if x < a[mid]:

return rsearch(a, x, lower, mid)
else:

return rsearch(a, x, mid, upper)

Quicksort
•Quicksort is a recursive sorting algorithm
•Like merge sort, quicksort breaks a list into smaller sub-lists and sorts the smaller lists

• It divides the list into sub-lists in a different manner, however
• The first element in a region to be sorted is chosen as the pivot element
• The region is then partitioned into two sub-regions with a helper function called partition

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 82

81

82

4/16/2020

42

Quicksort Example

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 83

Note: Once an
element is picked as a
pivot, it is already in
its eventual place!

Quicksort
•The partition function performs this work:

• Elements less than the pivot element are put in the left sub-region
• Elements greater than the pivot element are put in the right sub-region
• The pivot element is placed between the two sub-regions
• The pivot element is now in its final position

•Quicksort works in a “top-down” approach by repeatedly splitting largest lists into smaller ones,
whereas merge sort works in a “bottom-up” manner to recombine smaller lists into larger ones.

•See visualgo.net/en/sorting for animations

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 84

83

84

4/16/2020

43

Quicksort
•The partition function partitions only a portion of a list
•The function takes three arguments:

• A list of numbers
• The starting index of the region to partition
• The ending index of the region to partition

•For instance, partition(nums, 4, 15) means that nums[4] is the pivot element and that we
want to partition elements in the range nums[4:16]

•Example: nums = [62 88 6 85 39 19 82 23]
•Function call: partition(nums, 0, 7)
•Pivot element: 62 (element [0] is always the pivot element)
•After partition: [23 6 39 19 62 85 82 88]

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 85

Completed partition Function
def partition(a, p, r):

x = a[p]
i = p
for j in range(p+1, r+1):

if a[j] <= x:
i += 1
a[i], a[j] = a[j], a[i]

a[p], a[i] = a[i], a[p]
return i

•The function returns the index of where the pivot element eventually winds up in a[]. That
number also happens to be the number of elements ≤ the pivot element.

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 86

85

86

4/16/2020

44

Completed partition Function
def partition(a, p, r):

x = a[p]
i = p
for j in range(p+1, r+1):

if a[j] <= x:
i += 1
a[i], a[j] = a[j], a[i]

a[p], a[i] = a[i], a[p]
return i

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 87

Completed partition Function
def partition(a, p, r):

x = a[p]
i = p
for j in range(p+1, r+1):

if a[j] <= x:
i += 1
a[i], a[j] = a[j], a[i]

a[p], a[i] = a[i], a[p]
return i

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 88

87

88

4/16/2020

45

Completed partition Function
def partition(a, p, r):

x = a[p]
i = p
for j in range(p+1, r+1):

if a[j] <= x:
i += 1
a[i], a[j] = a[j], a[i]

a[p], a[i] = a[i], a[p]
return i

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 89

Completed partition Function
def partition(a, p, r):

x = a[p]
i = p
for j in range(p+1, r+1):

if a[j] <= x:
i += 1
a[i], a[j] = a[j], a[i]

a[p], a[i] = a[i], a[p]
return i

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 90

89

90

4/16/2020

46

Completed partition Function
def partition(a, p, r):

x = a[p]
i = p
for j in range(p+1, r+1):

if a[j] <= x:
i += 1
a[i], a[j] = a[j], a[i]

a[p], a[i] = a[i], a[p]
return i

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 91

Completed partition Function
def partition(a, p, r):

x = a[p]
i = p
for j in range(p+1, r+1):

if a[j] <= x:
i += 1
a[i], a[j] = a[j], a[i]

a[p], a[i] = a[i], a[p]
return i

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 92

91

92

4/16/2020

47

Completed partition Function
def partition(a, p, r):

x = a[p]
i = p
for j in range(p+1, r+1):

if a[j] <= x:
i += 1
a[i], a[j] = a[j], a[i]

a[p], a[i] = a[i], a[p]
return i

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 93

Completed partition Function
def partition(a, p, r):

x = a[p]
i = p
for j in range(p+1, r+1):

if a[j] <= x:
i += 1
a[i], a[j] = a[j], a[i]

a[p], a[i] = a[i], a[p]
return i

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 94

93

94

4/16/2020

48

Trace Execution: partition()
a: [5, 8, 1, 6, 3, 7, 2]
index: 0 1 2 3 4 5 6
def partition(a, p, r):

x = a[p]
i = p
for j in range(p+1, r+1):

if a[j] <= x:
i += 1
a[i], a[j] = a[j], a[i]

a[p], a[i] = a[i], a[p]
return i

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 95

Trace Execution: partition()
a: [5, 8, 1, 6, 3, 7, 2]
index: 0 1 2 3 4 5 6
def partition(a, p, r):

x = a[p]
i = p
for j in range(p+1, r+1):

if a[j] <= x:
i += 1
a[i], a[j] = a[j], a[i]

a[p], a[i] = a[i], a[p]
return i

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 96

95

96

4/16/2020

49

Trace Execution: partition()
a: [5, 8, 1, 6, 3, 7, 2]
index: 0 1 2 3 4 5 6
def partition(a, p, r):

x = a[p]
i = p
for j in range(p+1, r+1):

if a[j] <= x:
i += 1
a[i], a[j] = a[j], a[i]

a[p], a[i] = a[i], a[p]
return i

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 97

Trace Execution: partition()
a: [5, 8, 1, 6, 3, 7, 2]
index: 0 1 2 3 4 5 6
def partition(a, p, r):

x = a[p]
i = p
for j in range(p+1, r+1):

if a[j] <= x: # False
i += 1
a[i], a[j] = a[j], a[i]

a[p], a[i] = a[i], a[p]
return i

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 98

97

98

4/16/2020

50

Trace Execution: partition()
a: [5, 8, 1, 6, 3, 7, 2]
index: 0 1 2 3 4 5 6
def partition(a, p, r):

x = a[p]
i = p
for j in range(p+1, r+1):

if a[j] <= x:
i += 1
a[i], a[j] = a[j], a[i]

a[p], a[i] = a[i], a[p]
return i

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 99

Trace Execution: partition()
a: [5, 8, 1, 6, 3, 7, 2]
index: 0 1 2 3 4 5 6
def partition(a, p, r):

x = a[p]
i = p
for j in range(p+1, r+1):

if a[j] <= x: # True
i += 1
a[i], a[j] = a[j], a[i]

a[p], a[i] = a[i], a[p]
return i

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 100

99

100

4/16/2020

51

Trace Execution: partition()
a: [5, 8, 1, 6, 3, 7, 2]
index: 0 1 2 3 4 5 6
def partition(a, p, r):

x = a[p]
i = p
for j in range(p+1, r+1):

if a[j] <= x:
i += 1
a[i], a[j] = a[j], a[i]

a[p], a[i] = a[i], a[p]
return i

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 101

Trace Execution: partition()
a: [5, 1, 8, 6, 3, 7, 2]
index: 0 1 2 3 4 5 6
def partition(a, p, r):

x = a[p]
i = p
for j in range(p+1, r+1):

if a[j] <= x:
i += 1
a[i], a[j] = a[j], a[i]

a[p], a[i] = a[i], a[p]
return i

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 102

101

102

4/16/2020

52

Trace Execution: partition()
a: [5, 1, 8, 6, 3, 7, 2]
index: 0 1 2 3 4 5 6
def partition(a, p, r):

x = a[p]
i = p
for j in range(p+1, r+1):

if a[j] <= x:
i += 1
a[i], a[j] = a[j], a[i]

a[p], a[i] = a[i], a[p]
return i

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 103

Trace Execution: partition()
a: [5, 1, 8, 6, 3, 7, 2]
index: 0 1 2 3 4 5 6
def partition(a, p, r):

x = a[p]
i = p
for j in range(p+1, r+1):

if a[j] <= x: # False
i += 1
a[i], a[j] = a[j], a[i]

a[p], a[i] = a[i], a[p]
return i

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 104

103

104

4/16/2020

53

Trace Execution: partition()
a: [5, 1, 8, 6, 3, 7, 2]
index: 0 1 2 3 4 5 6
def partition(a, p, r):

x = a[p]
i = p
for j in range(p+1, r+1):

if a[j] <= x:
i += 1
a[i], a[j] = a[j], a[i]

a[p], a[i] = a[i], a[p]
return i

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 105

Trace Execution: partition()
a: [5, 1, 8, 6, 3, 7, 2]
index: 0 1 2 3 4 5 6
def partition(a, p, r):

x = a[p]
i = p
for j in range(p+1, r+1):

if a[j] <= x: # True
i += 1
a[i], a[j] = a[j], a[i]

a[p], a[i] = a[i], a[p]
return i

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 106

105

106

4/16/2020

54

Trace Execution: partition()
a: [5, 1, 8, 6, 3, 7, 2]
index: 0 1 2 3 4 5 6
def partition(a, p, r):

x = a[p]
i = p
for j in range(p+1, r+1):

if a[j] <= x:
i += 1
a[i], a[j] = a[j], a[i]

a[p], a[i] = a[i], a[p]
return i

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 107

Trace Execution: partition()
a: [5, 1, 3, 6, 8, 7, 2]
index: 0 1 2 3 4 5 6
def partition(a, p, r):

x = a[p]
i = p
for j in range(p+1, r+1):

if a[j] <= x:
i += 1
a[i], a[j] = a[j], a[i]

a[p], a[i] = a[i], a[p]
return i

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 108

107

108

4/16/2020

55

Trace Execution: partition()
a: [5, 1, 3, 6, 8, 7, 2]
index: 0 1 2 3 4 5 6
def partition(a, p, r):

x = a[p]
i = p
for j in range(p+1, r+1):

if a[j] <= x:
i += 1
a[i], a[j] = a[j], a[i]

a[p], a[i] = a[i], a[p]
return i

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 109

Trace Execution: partition()
a: [5, 1, 3, 6, 8, 7, 2]
index: 0 1 2 3 4 5 6
def partition(a, p, r):

x = a[p]
i = p
for j in range(p+1, r+1):

if a[j] <= x: # False
i += 1
a[i], a[j] = a[j], a[i]

a[p], a[i] = a[i], a[p]
return i

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 110

109

110

4/16/2020

56

Trace Execution: partition()
a: [5, 1, 3, 6, 8, 7, 2]
index: 0 1 2 3 4 5 6
def partition(a, p, r):

x = a[p]
i = p
for j in range(p+1, r+1):

if a[j] <= x:
i += 1
a[i], a[j] = a[j], a[i]

a[p], a[i] = a[i], a[p]
return i

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 111

Trace Execution: partition()
a: [5, 1, 3, 6, 8, 7, 2]
index: 0 1 2 3 4 5 6
def partition(a, p, r):

x = a[p]
i = p
for j in range(p+1, r+1):

if a[j] <= x: # True
i += 1
a[i], a[j] = a[j], a[i]

a[p], a[i] = a[i], a[p]
return i

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 112

111

112

4/16/2020

57

Trace Execution: partition()
a: [5, 1, 3, 6, 8, 7, 2]
index: 0 1 2 3 4 5 6
def partition(a, p, r):

x = a[p]
i = p
for j in range(p+1, r+1):

if a[j] <= x:
i += 1
a[i], a[j] = a[j], a[i]

a[p], a[i] = a[i], a[p]
return i

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 113

Trace Execution: partition()
a: [5, 1, 3, 2, 8, 7, 6]
index: 0 1 2 3 4 5 6
def partition(a, p, r):

x = a[p]
i = p
for j in range(p+1, r+1):

if a[j] <= x:
i += 1
a[i], a[j] = a[j], a[i]

a[p], a[i] = a[i], a[p]
return i

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 114

113

114

4/16/2020

58

Trace Execution: partition()
a: [2, 1, 3, 5, 8, 7, 6]
index: 0 1 2 3 4 5 6
def partition(a, p, r):

x = a[p]
i = p
for j in range(p+1, r+1):

if a[j] <= x:
i += 1
a[i], a[j] = a[j], a[i]

a[p], a[i] = a[i], a[p]
return i

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 115

Trace Execution: partition()
a: [2, 1, 3, 5, 8, 7, 6]
index: 0 1 2 3 4 5 6
def partition(a, p, r):

x = a[p]
i = p
for j in range(p+1, r+1):

if a[j] <= x:
i += 1
a[i], a[j] = a[j], a[i]

a[p], a[i] = a[i], a[p]
return i

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 116

115

116

4/16/2020

59

Quicksort
•The partition function will do most of the work in the quicksort algorithm:

• First, partition the entire list. The first pivot element will now be at its final position.
• Take the first sub-region of the list and partition it, and likewise for the second sub-region
• By now, 3 elements (the 3 pivot elements) are in their final positions and we have 4 small regions
• We partition those 4 sub-regions, causing 4 more pivot elements to be finally positioned (7 total pivots)

•This process continues until a region is so small that there is nothing to partition (zero elements
in the region)

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 117

Completed qsort Function
•The top-level function is qsort, which depends on a helper
•function called qs, which in turn calls partition:

def qsort(a):
qs(a, 0, len(a)-1) # sort the entire list

def qs(a, p, r):
if p < r:
q = partition(a, p, r)
qs(a, p, q-1) # recursively sort first
qs(a, q+1, r) # and second sub-regions

regions: [... p p+1 ... q-1 q q+1 ... r r + 1 ...]

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 118

117

118

4/16/2020

60

Trace Execution: qsort()
•Input: [55, 46, 89, 64, 93, 45, 15, 96]
•Red indicates a pivot element
•Values in brackets are parts of sub-regions that are being partitioned
•A red value outside brackets is a pivot element that was positioned during an earlier round of
partitioning

•[15, 46, 45, 55, 93, 89, 64, 96] 1st partition
•[15, 46, 45] 55 [64, 89, 93, 96] 2nd partitions
•15 [45, 46] 55 [64, 89] 93 [96] 3rd partitions
•15 45 [46] 55 64 [89] 93 96 4th partitions
•[15, 45, 46, 55, 64, 89, 93, 96] Done!

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 119

Trace Execution: qsort()

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 120

119

120

4/16/2020

61

Trace Execution: qsort()
Another way to visualize the partitioning steps:

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 121

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 122

121

122

4/16/2020

62

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 123

Additional Examples
of

Recursive Solutions to
Problems

Example: Sum of Fractions
•Although computing a sum is computed most efficiently with a loop, it is a simple problem to
understand, which makes it a good candidate for solving with recursion.

•Consider the problem of trying to compute the following sum, where n is a positive integer: 1 +
1/2 + 1/3 + … + 1/n

•Let’s consider a function sum_fracs() that computes and returns this sum
•The simplest case (base case) is where n = 1
•For n>1 we can compute the sum as 1/n plus the sum of 1 + 1/2 + 1/3 + … + 1/n-1, which we will
compute recursively

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 124

123

124

4/16/2020

63

Example: Sum of Fractions
def sum_fracs(n):

if n == 1:
return 1

return 1/n + sum_fracs(n - 1)

•See recursion_examples.py

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 125

Trace: sum_fracs(4)

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 126

125

126

4/16/2020

64

Example: Sum a List
•Suppose we want to write a function rsum that computes the sum of the values in the list
nums

•If nums has just one item, then the sum is just the value of nums[0]
•Otherwise, the sum is nums[0] plus the sum of the rest of the values, which is computed by a
recursive call to the function

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 127

Example: Sum a List
def rsum(nums):

if len(nums) == 1:
return nums[0]

return nums[0] + rsum(nums[1:len(nums)])

•Note the following two equivalent expressions:
• nums[1:]
• nums[1:len(nums)]

•See recursion_examples.py

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 128

127

128

4/16/2020

65

Trace: rsum([8,1,4,5])

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 129

Example: Exponentiation
•One way to compute an for integer n is to multiply a by itself n times: an = a*a* … *a

• This is easy to implement using a loop, but it I somewhat inefficient
• A more efficient approach ues recursion

•Example: suppose we want to compute 28

• From the laws of exponents we know 28 = 24 * 24

• If we compute the value of 24 once, we can simply multiply the value of 24 by itself
• Likewise, 24 = 22 * 22

•In general, an = an/2 * an/2 when n is even and an=a(n-1)/2 * a(n-1)/2*a when n is odd

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 130

129

130

4/16/2020

66

Example: Exponentiation
•Let’s use these formulas to write a function that recursively computes the nth power of any
nonzero integer

•For the base case we will use the fact that any non-zero value raised to the 0th power is 1

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 131

Example: Exponentiation
def power(base, exponent):

if exponent == 0:
return 1 # base case

elif exponent % 2 == 0: # even exponent
temp = power(base, exponent // 2)
return temp * temp

else: # odd exponent
temp = power(base, exponent // 2)
return temp * temp * base

•See recursion_examples.py

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 132

131

132

4/16/2020

67

Trace: power(3,5)

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 133

Example: Reverse a String
•Consider the problem of taking a string and reversing its characters

• Example: convert ‘stony’ to ‘ytons’
•Let’s explore a recursive function rev that solves this problem
•Let n be the length of a string s
•In the base case n=1, since s has only one character, just return s (“reversing” a single letter
requires no work)

•Otherwise, when n>1, return a string consisting of the last letter in s, followed by the reverse of
the first n-1 characters

•Doing this will require a recursive call to the rev function.

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 134

133

134

4/16/2020

68

Example: Reverse a String
•Some slicing notation that will help us:

• s[-1] means “get the last character of string s”
• s[:-1] means “get all but the last character of string s”
• The same syntaxes can also be used to with lists

def rev(s):
if len(s) == 1:

return s
return s[-1] + rev(s[:-1])

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 135

Trace: rev('stony')

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 136

135

136

4/16/2020

69

Example: Count Occurrences
•Python has a method named count(), which counts the number of times a target character
appears in a string

•For example, ‘stonybrook’.count(‘o’) is 3 because there are three lowercase o’s in
‘stonybrook’

•How might we implement a recursive function that solves the same problem?
•First, inspect the first character of the string

• If the character matches the target, we need to add 1 to the number of matches in the remainder of the
string

• Otherwise, we simply continue by counting the number of matches in the remainder of the string

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 137

Example: Count Occurrences
•But, how do we know how many times the target character appears in the remainder of the
string?
• We perform a recursive call to the function!

•So here’s our algorithm:
If the string has at least one character in it then:

If the first character matches, then return
(1 + the # of matches of the target in the rest of the string)

Otherwise, return the # of matches in the rest of the string

Otherwise, return 0

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 138

137

138

4/16/2020

70

Example: Count Occurrences
def count_occurrences(string, ch):

if len(string) > 0:
if string[0] == ch:

return 1 + count_occurrences(string[1:], ch)
return count_occurrences(string[1:], ch)

return 0

•See recursion_examples.py

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 139

Trace: count_occurrences()

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 140

139

140

4/16/2020

71

Example: Find Palindromes
•A palindrome is a word or phrase that can be read backwards and forwards
•Examples: radar, dad, toot, e
•Let’s consider a function, is_palindrome, which returns True if its argument is a palindrome,
and False if not

•How could we formulate a recursive solution to this problem?
• We need to consider the base case(s) and recursive step(s)

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 141

Example: Find Palindromes
•The simplest case (base case) would be a string with exactly one character, which, by definition,
would be a palindrome

•For the more general case we have two sub-problems:
1. Verify that the first character and the last character of the string are equal
2. If they match, ignore the two end characters and check whether the rest of the substring is a

palindrome
• If the first and last characters don’t match, then the string (or sub-string) is not a palindrome

•The notation to slice out the first and last elements of string s and keep the remaining characters
is s[1:-1]

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 142

141

142

4/16/2020

72

Example: Find Palindromes
def is_palindrome(s):

if len(s) <= 1: # a string of 0 or 1 characters
return True # is a palindrome

elif s[0] != s[-1]: # the first and last
return False # characters don't match

else:
return is_palindrome(s[1:-1])

•See recursion_examples.py

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 143

Trace: is_palindrome()

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 144

143

144

4/16/2020

73

Trace: is_palindrome()

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 145

Trace: is_palindrome()

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 146

145

146

4/16/2020

74

Example: Replace Multiples of 5
•Consider a peculiar function named replace_mult5 that takes a list of numbers and replaces all
multiples of 5 with a substitute number
• The list and the substitute are passed as arguments

•Here’s an example:
nums = [5,3,15,50,2,4,6,60]
replace_mult5(nums, 77)
• nums becomes: [77,3,77,77,2,4,6,77]
• Since this function does not return a value, it’s not entirely clear how to write it recursively

• Consider: how do we keep track of what part of the list we have processed so far?

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 147

Example: Replace Multiples of 5
•We can implement replace_mult5 more easily if we use a helper function
•Recall the qs helper function that helped us implement the qsort function earlier in this Unit
•Our helper function, replace_mult5_helper, will take the same two arguments as
replace_mult5, plus a third argument that tracks what part of the list we have already
processed:
def replace_mult5 (nums, sub)
def replace_mult5_helper(nums, sub, i)

•In a certain sense, the helper function will simulate the behavior of a loop, as we can see in the
implementation on the next slide

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 148

147

148

4/16/2020

75

Example: Replace Multiples of 5
def replace_mult5(nums, sub):

replace_mult5_helper(nums, sub, 0)

def replace_mult5_helper(nums, sub, i):
if i == len(nums): # base case

return
if nums[i] % 5 == 0:

nums[i] = sub
replace_mult5_helper(nums, sub, i+1)

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 149

Example: Replace Multiples of 5
•The recursive helper function could be written iteratively using the code below

def replace_mult5_helper(nums, sub, i):
for i in range(len(nums)):

if nums[i] % 5 == 0:
nums[i] = sub

•Compare this code with the recursive version. Do you see how the recursive version is
essentially simulating a for-loop?

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 150

149

150

4/16/2020

76

Trace: replace_mult5_helper
•Example: nums = [4,10,2,5]

replace_mult5_helper(nums, 8, 0)

•Abbreviating replace_mult5_helper as rmh
rmh([4,10,2,5],8,0) rmh([4,10,2,5],8,1)

rmh([4,10,2,5],8,1) rmh([4,8,2,5],8,2)
rmh([4,8,2,5],8,2) rmh([4,8,2,5],8,3)

rmh([4,8,2,5],8,3) rmh([4,8,2,8],8,3)
rmh([4,8,2,8],8,3) do nothing & return

•Since the recursive call is the last statement in the function, the four recursive calls now simply
return to each other, in sequence, performing no additional work

•The final contents of nums is [4,8,2,8]

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 151

Example: Find Index of Character
•Python has a built-in string method called index that returns the index of the first occurrence of
a character (or substring, actually) in a string

•Example:
school = 'stony brook’
pos = school.index('o’) # pos will be 2

•If the target character or substring does not appear in the string, the program crashes
•Let’s consider a recursive solution to this problem and implement it in a function rindex
•In cases where the target string is not found, the rindex function will simply return None
instead of crashing the program

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 152

151

152

4/16/2020

77

Example: Find Index of Character
•One challenge we face is that somehow we need to keep track of what part of the string we
have searched so far

•We will write a helper function, rindex_helper, that will assist with this task
•The helper function will ultimately solve the problem
•All that rindex will need to do is call rindex_helper with the correct arguments

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 153

Example: Find Index of Char.
def rindex(string, target):

return rindex_helper(string, target, 0)

def rindex_helper(string, target, i):
if i >= len(string):

return None
elif string[i] == target:

return i
else:

return rindex_helper(string, target, i+1)

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 154

153

154

4/16/2020

78

Trace: rindex_helper

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 155

Trace: rindex_helper

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 156

155

156

4/16/2020

79

Recursive Helper Functions
•The following material is based on notes by Jayesh Ranjan, a computer science major who
served as a TA for CSE 101 many times during his studies at Stony Book University

•The main focus on this guide is on understanding the relationship between iteration and
recursion: both are forms of repetition, but each implements the repetition in a different way

•Suppose you wanted to use a loop find the sum of all integers from 0 through n, inclusive
•One possible solution is given on the next slide

• A while-loop is used because it will match up more closely with the recursive version

•See iter_to_rec.py

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 157

Recursive Helper Functions
def iter_sum(n):

i = 1
total = 1
while i <= n:

total += i
i += 1

return total

•Somehow we need to map this iterative algorithm to a recursive implementation, specifically:
• the i and total variables
• the while-loop condition and body
• the return statement

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 158

157

158

4/16/2020

80

Recursive Helper Functions
•Ultimately, we want a function rec_sum(n) we can call that will return the correct value
•We will use a recursive helper function to keep track of the i variable by taking it as an argument
to the helper

•The total variable will be implemented as the return value of the helper function
•The while-loop’s condition in the iterative solution will need to be replaced with a condition for
an if-statement that will terminate the recursion
• So, in both the iterative and recursive solutions we need a carefullywritten condition to stop the

repetition
•The recursive implementation is given on the next slide

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 159

Recursive Helper Functions
def rec_sum(n):

return rec_sum_helper(n, 1)

def rec_sum_helper(n, i):
if i == n:

return n
return i + rec_sum_helper(n, i+1)

•Let’s try to understand now how this code matches up with the iterative solution

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 160

159

160

4/16/2020

81

Recursive Helper Functions
Iterative version: Recursive version:
i = 1 rec_sum_helper(n, 1)

Initializing i to 1 in the iterative version is akin to calling the recursive helper function with an i
argument of 1.

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 161

Recursive Helper Functions
Iterative version: Recursive version:
while i <= n if i == n

•The while-loop will stop iterating (repeating) once i > n. Similarly, the recursive version will stop
making function calls once i == n.

•When i == n in the recursive version, we return n itself. This means that n will be added to the
running total that the function is recursively computing.

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 162

161

162

4/16/2020

82

Recursive Helper Functions
Iterative version: Recursive version:
total += I return i +
i += 1 rec_sum_helper(n, i+1)

The two += statements from the iterative version are captured in the single line from the
recursive version.
Color is used to show the connection between versions. There is no total variable for the
recursive function. Rather, the function’s return value serves this purpose.

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 163

Recursive Helper Functions
def iter_sum(n): def rec_sum(n):

i = 1 return rec_sum_helper(n, 1)
total = 0
while i <= n: def rec_sum_helper(n, i):

total += I if i == n:
i += 1 return n

return total return i +
rec_sum_helper(n, i+1)

•It’s not really possible to make a perfect one-to-one matching between the code in both
versions, but I’ve attempted to do so here using color

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 164

163

164

4/16/2020

83

Questions?

(C) ARTHUR LEE, TONY MIONE, PRAVIN PAWAR, ALEX KUHN - SUNY KOREA - CSE 101 165

165

