
4/28/2020

1

Introduction to
Computational and
Algorithmic Thinking
CHAPTER 6– MACHINE LEARNING AND STRING MANIPULATION

Announcements
This lecture: Machine Learning and String Manipulation

Reading: Read Chapter 6 of Conery

Acknowledgement: Some of this lecture slides are based on CSE 101 lecture notes by Prof. Kevin
McDonald at SBU

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 2

1

2

4/28/2020

2

Machine Learning
•Machine learning is a branch of computer science consisting of algorithms and techniques for
“teaching” computers to recognize patterns, make predictions, detect trends, and the like.

•One well-known application of machine learning is spam filtering

•As a user flags emails as spam, over time the software learns how to identify spam itself,
flagging spam emails automatically

•We will develop a spam filter that uses word frequencies

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 3

Machine Learning
•For example, if the word “diet” appears in 63 of 500 emails flagged by the user as spam, the
probability of a spam email containing “diet” is 63/500 = 0.126 or 12.6%

•Such frequencies will help the software learn how to detect spam and calculate a probability
that a particular email is spam

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 4

3

4

4/28/2020

3

Strings Revisited
•Unlike lists, strings are immutable objects, which means you cannot change them
•For example, if you try to execute the code given below:

fruit = ’apple’
fruit[0] = ‘A’
then you get the following error:
TypeError: 'str' object does not support item assignment

•In other words, you can’t assign a new value to an existing string by changing the contents of the
string
• We can only replace an entire string

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 5

Strings Revisited
•We need to use methods to create a new string based on an existing string
•Some handy string methods include:

• upper: changes all the characters to uppercase
• lower: changes all the characters to lowercase
• capitalize: capitalizes the word

•For each of these methods, the method makes a copy of the string, leaving the original
unchanged

name = ‘suny korea’
new_name = name.upper()
• name will still be ‘suny korea’, but new_name will be ‘SUNY KOREA’

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 6

5

6

4/28/2020

4

Strings Revisited
•Another example:

name = ‘SUNY Korea’
new_name = name.lower()
• new_name will be ‘suny korea’. The name variable remains unchanged.

•One last example:
name = ‘suny korea’
new_name = name.capitalize()
• new_name will be ‘Suny korea’. The name variable remains unchanged.

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 7

Splitting Strings
•A very useful string method in Python is split()
•The method splits a string into smaller substrings, using the space character to separate “words”
(but the words could actually have any characters in them)

•The substrings are placed inside of a list, which the split method returns back to us, the caller
•Example:

school = 'Stony Brook Univ'
parts = school.split()

•parts will be the list [‘Stony’, ‘Brook’, ‘Univ’]

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 8

7

8

4/28/2020

5

Splitting Strings
•In fact, the split method will use any whitespace characters to split a string into parts
•Whitespace characters include spaces, tabs and newlines
•In Python, a newline is denoted \n and a tab is \t

• These are examples of escape sequences, which use a backslash to denote special characters
•Example:

line = 'To be or not to be,\nthat is\tthe question.’
words = line.split()

•words will be ['To', 'be', 'or', 'not', 'to', 'be,’, 'that', 'is', 'the', 'question.’]

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 9

Text Files
•Files come in two general formats: plain text files and binary files

• A (plain) text file is a simple file whose contents can be read by a basic text editor
• .py and .txt files are examples of text files
• Everything not a text file (images, videos, MP3s, compiled programs, etc.) is called a binary file because

the file has a specific structure

•In this course we will look at only how to work with text files

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 10

9

10

4/28/2020

6

Text Files
•Files give us a convenient way to provide input to a program so that we don’t have to type the
input over and over

•Programs that work with files need to perform three basic tasks:
1. Open the file
2. Read data from and/or write data to the file
3. Close the file so that other programs can access it

•Let’s see how these tasks are handled in Python

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 11

Reading Files in Python
•To open a file in Python we need to give its location on the disk

• For example, suppose we have a file named “words.txt” in a folder named CSE101 and also that CSE101
is in a folder named Classes

• Let’s further assume that our program (the .py file) is saved in the folder named Classes
• Our program would refer to the file’s name as filename = "CSE101/words.txt"

•The slash is called a separator and forms part of the path to the file on the disk
• For example, assuming Classes is a folder within another folder (…), the following would be part of the

path:
• "…/Classes/CSE101/words.txt"

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 12

11

12

4/28/2020

7

Reading Files in Python
•Once we have a file’s path, we can open the file for reading using:

f = open(filename)
or whatever variable name we like instead of simply f

•To read a single line of text at a time, we can repeatedly call the readline() function:
line = f.readline() # reads first line
line = f.readline() # reads second line
and so on...

•When we are done with the file, we type f.close() to close it

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 13

Reading Files in Python
•Usually in programming we need to process an entire file, not just part of it
•For this reason Python has a simpler syntax we can use when we need to process an entire file
•To read a file’s entire contents line-by-line, we can write this for-loop:

for li in open(filename):
. . .

•The advantage of this syntax is that we don’t even need to make a separate variable (like f, from
an earlier example) to point to the file and we don’t need to manually close it

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 14

13

14

4/28/2020

8

Example: Getting File Size
•The function below takes the name of a file as an argument and returns the number of
characters in the file
def filesize(filename):

nchars = 0
for li in open(filename):

nchars += len(li)
return nchars

•Example usage:
size = filesize(‘../PythonLabs/data/email/good.txt’)

•See filesize.py

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 15

Counting Words in a File
•The Unix/Linux family of operating systems has a command called wc, which gives a count of
how many words are in a file

•Consider a wc function in Python that performs the same task
•Our wc function will return three values (in this order):

• the number of lines in the file
• the number of words in the file
• the number of characters in the file

•This means we need to count three quantities
• Therefore, three counters (variables) will be needed, each initialized to zero

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 16

15

16

4/28/2020

9

Counting Words in a File
•Python provides a convenient means for initializing multiple variables to the same value via a
multiple target assignment.
• Instead of writing three separate assignment statements, we can collapse them into one
• Example: nlines = nwords = nchars = 0

•To return three values from our function we will actually return a tuple (pronounced “tupple”)
•A tuple is like a list in that it contains several values
•Unlike a list, a tuple is immutable (i.e., its contents cannot be changed, just as a string is
immutable)

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 17

Example: wc() Function
def wc(filename):

nlines = nwords = nchars = 0
for li in open(filename):

nlines += 1
nwords += len(li.split())
nchars += len(li)

return nlines, nwords, nchars

•We can perform a tuple assignment to save the multiple values returned by the wc function:
•lines, words, chars = wc(‘../PythonLabs/data/email/good.txt’)

•See wc.py

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 18

17

18

4/28/2020

10

Dictionaries (next)
•In Python, a dictionary is a type of collection where we can index (access) an element in the
collection using a name instead of an integer index (as in a list)

•We create a dictionary using curly braces, { }, but we still access the values using square brackets
[]

•To create an empty dictionary, we type this:
dictionary_name = {}

•To insert or update a value stored in a dictionary, we give the key for the value and the value
itself

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 19

Dictionaries
•Suppose we want a distances dictionary to represent the number of feet in a single yard,
fathom, furlong, or mile

•We might initialize these values as follows:
distances['yard'] = 3
distances['fathom'] = 6
distances['furlong'] = 660
distances['mile'] = 5280

•distances is now: {'fathom': 6, 'furlong': 660, 'mile': 5280, 'yard': 3}
•The strings, ‘fathom’, ‘furlong’, ‘mile’ and ‘yard’ are the keys of the dictionary.
•6, 660, 5280 and 3 are the values of the dictionary.

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 20

19

20

4/28/2020

11

Dictionaries
•We look up a value in the dictionary by giving its key:

• distances[‘fathom’] has the value 6

•Suppose we wanted to know how many feet are in 10 furlongs
• The code 10 * distances['furlong'] would give us the answer (6,600)

•Now how many miles is 10 furlongs?
• (10 * distances['furlong']) / distances['mile’]

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 21

Dictionaries
•In programming, a dictionary is considered an unordered collection

• This means that the concept of sorting really doesn’t apply naturally to dictionaries (unlike a real
dictionary, which is definitely sorted!)

•Another important fact is that only immutable types can be used as the keys
• So you can use integers, strings and floating-point numbers for keys
• This makes dictionaries a little more flexible than lists in that regard

• cf. lists can only use integers as index (key)

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 22

21

22

4/28/2020

12

Dictionaries
•Here is another example of a dictionary where we map Arabic numerals to Roman numerals:

roman = { 1: 'I', 5: 'V', 10: 'X’,
50: 'L', 100: 'C'}

• Note that 1, 5, 10, etc. are not indexes as with a list, but are rather keys
•If we try to use a key that is not in the dictionary, the program will crash
•So, first we should use the in operator to check if the value is in the dictionary
•An example is given on the next slide

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 23

Dictionaries
number = 10
if number in roman:

print(roman[number])
else:

print(‘Numeral not recognized.’)

•Another option is to use the get method for dictionaries
•If we don’t know if the provided key is in the dictionary, we can use the get method instead of []
to retrieve a value

•We must provide an argument that says what should be used as the value if the key is not found.
An example:
res = roman.get(number, ‘Numeral not recognized’)
print(res)

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 24

23

24

4/28/2020

13

Word Frequencies for Spam Filtering
•Getting back to our original problem, we want to build a program
•that will do basic spam filtering
•Part of the solution will include counting how many times each word appears in the input email
message

•We can define a dictionary called count to serve this purpose:
count = {}

•To increment the count for a word, we can use the += 1 notation
• Suppose the variable word has the string we want to increment the count of
• We can write this: count[word] += 1

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 25

Word Frequencies for Spam Filtering
•But what if we aren’t sure the string stored in word is already in the dictionary?

• Code like count[word] += 1 will cause the program to crash if there is no value associated with word
that we can add 1 to

•We should first check using either the if-based approach we saw earlier, or use the setdefault
method, which avoids the need to use an if-statement

•Both of these techniques are most easily understood by example

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 26

25

26

4/28/2020

14

Word Frequencies for Spam Filtering
•Option 1: Use an if-statement:

if word not in count:
count[word] = 1

else:
count[word] += 1

•Option 2: Use the setdefault method:
•The setdefault method can take the place of the if-statement
•We will set count[word] to 0 only if the string inside word is not a key in the dictionary yet

count.setdefault(word, 0)
count[word] += 1

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 27

Word Frequencies for Spam Filtering
•Now we need to get the individual words from the input file so that we can use our count dictionary
to count how many times each word appears in the file

•We can use split method:
for line in open('../PythonLabs/data/text/quote1.txt’):

words = line.split()

•quote1.txt contains this text:
If you have no confidence in self,

you are twice defeated in the race of life.
With confidence, you have won even before you have
started.
-- Marcus Tullius Cicero (106 BC -- 43 BC)

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 28

27

28

4/28/2020

15

Word Frequencies for Spam Filtering
•quote1.txt contains this text:

If you have no confidence in self,
you are twice defeated in the race of life.

With confidence, you have won even before you have
started.
-- Marcus Tullius Cicero (106 BC -- 43 BC)

•Calling split on each line of the text yields these lists:
['If', 'you', 'have', 'no', 'confidence', 'in’,
'self,']

['you', 'are', 'twice', 'defeated', 'in', 'the’,
'race', 'of', 'life.']

['With', 'confidence,', 'you', 'have', 'won’,
'even', 'before', 'you', 'have', 'started.']

['--', 'Marcus', 'Tullius', 'Cicero', '(106’,
'BC', '--', '43', 'BC)']

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 29

Word Frequencies for Spam Filtering
•So far this is looking pretty good. Let’s insert each word into a dictionary now and keep track of
the counts:
count = {}
for line in open('../PythonLabs/data/text/quote1.txt’):

words = line.split()
for word in words:

count.setdefault(word, 0)
count[word] += 1

•The count dictionary will now contain a count of every word in the file
•The full dictionary is shown on the following slide

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 30

29

30

4/28/2020

16

Word Frequencies for Spam Filtering
{'BC': 1, '--': 2, 'of': 1, 'Tullius': 1,
'confidence,': 1, '(106': 1, 'BC)': 1, 'Marcus': 1,
'are': 1, 'started.': 1, 'confidence': 1, 'race':
1, 'even': 1, 'twice': 1, 'With': 1, 'defeated': 1,
'won': 1, 'have': 3, 'Cicero': 1,
'self,': 1, '43': 1, 'no': 1, 'you': 4, 'life.': 1,
'If': 1, 'the': 1, 'in': 2, 'before': 1}

•Do you see anything unfortunate about this?

•Is there room for improvement in how we do the counting?

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 31

Word Frequencies for Spam Filtering
•We have a few problems:

• We might have the same word appearing in the text with different capitalization (not shown in this
example)

• Punctuation is causing us issues in this example: “confidence” and “confidence,” (with a comma) are
treated as separate words

• This means they are treated as different keys in the dictionary

•To solve these two problems we will convert all words to lowercase, which is easy, and we will
strip out all punctuation marks

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 32

31

32

4/28/2020

17

Stripping Strings
•The strip method in Python will let us delete from the beginning and end of a string any
characters from the string that we don’t want

•For example, s1.strip('0123456789') would strip out all numerals at the start or end of string
s1

•Here’s a concrete example:
•s1 = '2/13/2193. Astronauts living on Mars base: 4,920'
•s2 = s1.strip('0123456789')
•s2 will contain '/13/2193. Astronauts living on

Mars base: 4,'

•s1 will remain unchanged

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 33

Stripping Strings
•Because stripping punctuation is a common operation in text processing, Python has it built-in
through the string module:

import string
s1 = 'Good morning!'
s2 = s1.strip(string.punctuation)

•s2 will contain 'Good morning'

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 34

33

34

4/28/2020

18

Word Frequencies for Spam Filtering
(next)

•With these programming capabilities at hand, we can write a function wf that will create a
dictionary of word frequencies for us

•It will rely on a helper function tokenize that will split a string into a list of lowercase words with
punctuation marks stripped from each lowercase string

•In programming, the word tokenize means to process an input string, splitting or dividing it into
its constituent parts (or substrings)
• These substrings are the tokens

•Let’s take a look at the tokenize function

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 35

Word Frequencies for Spam Filtering
def tokenize(s):

tokens = []
for x in s.split():

tokens.append(x.strip(string.punctuation).lower())
return tokens

•Let’s break down this code:

•s is a string, perhaps a line from the file

•x is a word taken from the string (via split)

•x is stripped of its punctuation, converted to lowercase, and then appended to the tokens list

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 36

35

36

4/28/2020

19

Word Frequencies for Spam Filtering
•Let’s see an example of tokenize:

res = tokenize('With confidence, you have won even before you have started.’)

•res will contain the list ['with', 'confidence', 'you’, 'have', 'won', 'even', 'before',
'you', 'have’, 'started’]

•Now we can look at the completed wf function, on the next slide

•This function will not be explicitly used in implementing our spam filter, but looking at it will give
us a sense of how to work with dictionaries in an effective manner

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 37

Word Frequencies for Spam Filtering
def wf(filename):

count = {}
for line in open(filename):

for word in tokenize(line):
count.setdefault(word, 0)
count[word] += 1

return count

•Let’s break down this code on the next few slides

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 38

37

38

4/28/2020

20

Word Frequencies for Spam Filtering
def wf(filename):

count = {}
for line in open(filename):

for word in tokenize(line):
count.setdefault(word, 0)
count[word] += 1

return count

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 39

Word Frequencies for Spam Filtering
def wf(filename):

count = {}
for line in open(filename):

for word in tokenize(line):
count.setdefault(word, 0)
count[word] += 1

return count

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 40

39

40

4/28/2020

21

Word Frequencies for Spam Filtering
def wf(filename):

count = {}
for line in open(filename):

for word in tokenize(line):
count.setdefault(word, 0)
count[word] += 1

return count

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 41

Word Frequencies for Spam Filtering
def wf(filename):

count = {}
for line in open(filename):

for word in tokenize(line):
count.setdefault(word, 0)
count[word] += 1

return count

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 42

41

42

4/28/2020

22

Word Frequencies for Spam Filtering
def wf(filename):

count = {}
for line in open(filename):

for word in tokenize(line):
count.setdefault(word, 0)
count[word] += 1

return count

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 43

Word Frequencies for Spam Filtering
•Let’s see an example of wf for the quote1.txt file

res = wf(‘../quote1.txt')

•res will contain:
{'': 2, '106': 1, '43': 1, 'are': 1, 'bc': 2,
'before': 1, 'cicero': 1, 'confidence': 2,
'defeated': 1, 'even': 1, 'have': 3, 'if': 1,
'in': 2, 'life': 1, 'marcus': 1, 'no': 1, 'of':
1, 'race': 1, 'self': 1, 'started': 1, 'the':
1, 'tullius': 1, 'twice': 1, 'with': 1, 'won':
1, 'you': 4}

•Note that the problems we encountered before have been fixed (e.g., “confidence”)

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 44

43

44

4/28/2020

23

Spamicity (aka Spaminess)
•Now that we have a way of counting the number of occurrences of each word in a file, we can
use it to help us calculate the probability that an email is spam

•Suppose we know that the word “secret” appears in 252 out of 1000 spam messages
•We might define the spam probability of “secret” as 252/1000 = 0.252

• In other words, the probability of seeing the word “secret” in a piece of spam is 0.252
•This idea of a probability of some event being based on some known fact is called conditional
probability

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 45

Spamicity
•The probability of seeing a particular word w in an email we know is spam will be denoted
P(w/spam)

•Read this as “the probability of seeing word w, given a spam email”
•From the Internet we can download training data that gives us these probabilities for a large
number of words.

•The data is made available by people who design spam filtering algorithm.
•Ultimately, we want to compute the “spamicity” of w, which is P(spam/w)

• This is the probability that an email is spam, given that w appears in the email

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 46

45

46

4/28/2020

24

Spamicity
•The textbook’s SpamLab contains training data we can load using this code:

from PythonLabs.SpamLab import load_probabilities
pbad = load_probabilities('email/bad.txt')
pgood = load_probabilities('email/good.txt’)

•pbad is a dictionary that tells us the probability of a word appearing in a spam message
•Likewise, pgood is a dictionary that tells us the probability of a word appearing in a non-spam
message

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 47

Spamicity
•For example, pbad['money'] is 0.127 and pgood['money'] is 0.0164

•We see that the probability of “money” appearing in a spam message is 0.127, and its
probability of appearing in a non-spam message is 0.0164

•What if we encounter a word that is not in either dictionary?
• Then, we really don’t know anything about the word and can’t use it to help us identify spam messages

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 48

47

48

4/28/2020

25

Spamicity
•With pbad and pgood we can now define the “spamicity” of a word

• The spamicity will be closer to 1 than to 0 when an word appears in more spam messages than good
messages

• The spamicity will be closer to 0 than to 1 when a word is found in more good messages than in spam
messages

•Define spamicity of a word w using this formula:
spamicity(w) = P(spam|w)

= P(w|spam) / (P(w|spam) + P(w|good))

•This formula is based on a concept called Bayesian inference, which is explained a little in the
textbook if you want to check it out

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 49

The spamicity() Function
•The two conditional probabilities in the formula will come directly from the pbad and pgood
dictionaries

•We can now write a function to compute spamicity:
def spamicity(w, pbad, pgood):

if w in pbad and w in pgood:
return pbad[w] / (pbad[w] + pgood[w])

else:
return None

•For example, spamicity(“money”) is 0.89, meaning that we predict 89% of incoming messages
containing the word “money” are spam

•If the word w is not in one or both dictionaries, the value None is returned

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 50

49

50

4/28/2020

26

Identifying Junk Mail
•Now we will use our spamicity function to help us classify entire emails as good or spam
•Somehow we need to combine the spamicity values of the words in a message
•The approach we will take is to consider “interesting” words – those words with high or low
spamicity

•Let’s define the “interestingness quotient” (IQ) of a word w as IQ(w)=|0.5-s|, where s is the
spamicity of word w

•The IQ of a word will range from 0.0 to 0.5, with 0.5 meaning a very interesting word
•So a word with a high spamicity will have an IQ near 0.5, but so will a low-spamicity word

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 51

Identifying Junk Mail
•Consider some examples:
•If s=0.9, then |0.5-0.9|=0.4
•If s=0.05, then |0.5-0.05|=0.45
•A “boring” word would have s near 0.5. Consider s=0.47. Then, that word’s IQ is |0.5-0.47|=0.03,
which is quite low

•We will use a data structure called a priority queue , which lets us add and remove items from a
collection, always putting the highest priority item at the front

•The SpamLab contains a version of a priority queue we can use to keep track of the most
interesting words in an email
• It sorts words by their IQs

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 52

51

52

4/28/2020

27

Identifying Junk Mail
•As we add or remove words, the most interesting word will always be at the front

•Here’s a short example of how we might use the queue
from PythonLabs.SpamLab import WordQueue
pq = WordQueue(10) # creates a queue to

hold 10 words
s = spamicity('there', pbad, pgood)
pq.insert('there', s)
s = spamicity('book', pbad, pgood)
pq.insert('book', s)

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 53

Identifying Junk Mail
•Now we can define the top-level function pspam, which will give us a probability that a
particular message is spam

•The input will come from a file

•The function will depend on another function called combined_probability that uses some
formulas from probability theory to combine all the word spamicity values into a single number

•See junk_mail.py

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 54

53

54

4/28/2020

28

The pspam() Function
import statements omitted to save space
def pspam(fn):

queue = WordQueue(15)
pbad = load_probabilities('email/bad.txt’)
pgood = load_probabilities('email/good.txt’)
with open(fn) as message:

for line in message:
for w in tokenize(line):

p = spamicity(w, pbad, pgood)
if p is not None:

queue.insert(w, p)
return combined_probability(queue)

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 55

The pspam() Function
import statements omitted to save space
def pspam(fn):

queue = WordQueue(15)
pbad = load_probabilities('email/bad.txt’)
pgood = load_probabilities('email/good.txt’)
with open(fn) as message:

for line in message:
for w in tokenize(line):

p = spamicity(w, pbad, pgood)
if p is not None:

queue.insert(w, p)
return combined_probability(queue)

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 56

55

56

4/28/2020

29

The pspam() Function
import statements omitted to save space
def pspam(fn):

queue = WordQueue(15)
pbad = load_probabilities('email/bad.txt’)
pgood = load_probabilities('email/good.txt’)
with open(fn) as message:

for line in message:
for w in tokenize(line):

p = spamicity(w, pbad, pgood)
if p is not None:

queue.insert(w, p)
return combined_probability(queue)

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 57

The pspam() Function
import statements omitted to save space
def pspam(fn):

queue = WordQueue(15)
pbad = load_probabilities(

'email/bad.txt’)
pgood = load_probabilities(

'email/good.txt’)
with open(fn) as message:

for line in message:
for w in tokenize(line):

p = spamicity(w, pbad, pgood)
if p is not None:

queue.insert(w, p)
return combined_probability(queue)

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 58

57

58

4/28/2020

30

The pspam() Function
import statements omitted to save space
def pspam(fn):

queue = WordQueue(15)
pbad = load_probabilities(

'email/bad.txt’)
pgood = load_probabilities(

'email/good.txt’)
with open(fn) as message:

for line in message:
for w in tokenize(line):

p = spamicity(w, pbad, pgood)
if p is not None:

queue.insert(w, p)
return combined_probability(queue)

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 59

The pspam() Function
import statements omitted to save space
def pspam(fn):

queue = WordQueue(15)
pbad = load_probabilities(

'email/bad.txt’)
pgood = load_probabilities(

'email/good.txt’)
with open(fn) as message:

for line in message:
for w in tokenize(line):

p = spamicity(w, pbad, pgood)
if p is not None:

queue.insert(w, p)
return combined_probability(queue)

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 60

59

60

4/28/2020

31

The pspam() Function
import statements omitted to save space
def pspam(fn):

queue = WordQueue(15)
pbad = load_probabilities(

'email/bad.txt’)
pgood = load_probabilities(

'email/good.txt’)
with open(fn) as message:

for line in message:
for w in tokenize(line):

p = spamicity(w, pbad, pgood)
if p is not None:

queue.insert(w, p)
return combined_probability(queue)

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 61

The pspam() Function
import statements omitted to save space
def pspam(fn):

queue = WordQueue(15)
pbad = load_probabilities(

'email/bad.txt’)
pgood = load_probabilities(

'email/good.txt’)
with open(fn) as message:

for line in message:
for w in tokenize(line):

p = spamicity(w, pbad, pgood)
if p is not None:

queue.insert(w, p)
return combined_probability(queue)

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 62

61

62

4/28/2020

32

The pspam() Function
import statements omitted to save space
def pspam(fn):

queue = WordQueue(15)
pbad = load_probabilities(

'email/bad.txt’)
pgood = load_probabilities(

'email/good.txt’)
with open(fn) as message:

for line in message:
for w in tokenize(line):

p = spamicity(w, pbad, pgood)
if p is not None:

queue.insert(w, p)
return combined_probability(queue)

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 63

pspam() Example #1
•pspam('../PythonLabs/data/email/msg1.txt’)
•Result: 0.92930483265 (high probability of spam)
•File contents: (correctly identified as spam)

• Hurting for funds right now?
• It doesn't have to be that way. Here is 1,500 to ease
• your pain: http://bulk.hideorganic.com/
• 171026390236329103248372180 Transfer immediately to the
• account of your choice: http://bulk.hideorganic.com/
• 171026390236438808248372180 Take your time to pay off
• this amazing loan. Small payment due in late September
• or early October (and not all in one payment!).

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 64

63

64

4/28/2020

33

pspam() Example #2
•pspam('../PythonLabs/data/email/msg2.txt’)
•Result: 4.400695206e-05 (practically a zero probability)
•File contents: (correctly identified as non-spam)

Hi John:
Interesting that the key might be preventing ANY
crystals from being able to nucleate - which kicks off
a chain reaction and the whole thing goes to hell. Thus
the very clean pot and not allowing anything to splash
up onto the sides. Cooking really is chemistry! Thanks
for the links.
Susie
[... rest of message follows ...]

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 65

pspam() Example #3
•pspam('../PythonLabs/data/email/msg3.txt')
•Result: 0.05810198935 (low probability of spam)
•File contents: (incorrectly identified as non-spam)

Guess what conery@cs.uoregon.edu!
AUTO CLEARANCE ENDS TONIGHT! : Price Drop On All
Vehicles
Want To Drive A Brand New Car Today For A Fraction Of
What You Thought You Would Pay?
Now You Can! Dealers Have Drastically Reduced MSRPs.
AVAILABLE ONLY UNTIL 10:00 PM TONIGHT! http://
server.beavercreekdistrict.com/
3813010413df842258012632451675
Click this link to unsubscribe: http://
server.beavercreekdistrict.com/
3813010413df528010632451675

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 66

65

66

4/28/2020

34

pspam() Example #4
•pspam('../PythonLabs/data/email/msg4.txt’)
•Result: 3.758445e-15 (practically a zero probability)
•File contents: (correctly marked as non-spam)

Hi John, I meant to ask you if you tried the revised
cat command. Were you able todo what you needed?
Regarding your lab meetings... sure, I could come and
give a brief description and answer any questions your
group members might have. My assistant, Erik, has just
put up more information from Chris' slides onto the
wiki that might be helpful. It would be helpful to me
if I knew in advance more specifically what kind of
questions to address before coming - perhaps you can
collect some at today's group meeting?
Cheers,Rob

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 67

Example: Date Decoder
•Consider the task of converting a date from one format to another
•A date of the form 8-MAR-85 includes the name of the month, which must be translated to a
number

•We can use a dictionary to map month names to numbers
•Let’s consider a function date_decoder that uses string operations to split the date into its
three parts

•Then it translates the month to digits and corrects the year to include all four digits: 70-99 will
be mapped to 1970-1999, and 00-69 will be mapped to 2000-2069

•Finally, the function returns the tuple (y, m, d)

•See date_decoder.py

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 68

67

68

4/28/2020

35

Example: date_decoder.py
def date_decoder(date):

months = {'jan': 1, 'feb': 2, 'mar': 3, 'apr': 4,
'may': 5, 'jun': 6, 'jul': 7, 'aug': 8,
'sep': 9, 'oct': 10, 'nov': 11, 'dec': 12}

parts = date.lower().split('-’)
day = int(parts[0])
month = months[parts[1]]
year = 1900 + int(parts[2])
if int(parts[2]) <= 69:

year += 100
return year, month, day

print(date_decoder('8-MAR-85’))
print(date_decoder('17-Apr-25'))

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 69

Example: date_decoder.py
def date_decoder(date):

months = {'jan': 1, 'feb': 2, 'mar': 3, 'apr': 4,
'may': 5, 'jun': 6, 'jul': 7, 'aug': 8,
'sep': 9, 'oct': 10, 'nov': 11, 'dec': 12}

parts = date.lower().split('-’)
day = int(parts[0])
month = months[parts[1]]
year = 1900 + int(parts[2])
if int(parts[2]) <= 69:

year += 100
return year, month, day

print(date_decoder('8-MAR-85’))
print(date_decoder('17-Apr-25'))

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 70

69

70

4/28/2020

36

Example: date_decoder.py
def date_decoder(date):

months = {'jan': 1, 'feb': 2, 'mar': 3, 'apr': 4,
'may': 5, 'jun': 6, 'jul': 7, 'aug': 8,
'sep': 9, 'oct': 10, 'nov': 11, 'dec': 12}

parts = date.lower().split('-’)
day = int(parts[0])
month = months[parts[1]]
year = 1900 + int(parts[2])
if int(parts[2]) <= 69:

year += 100
return year, month, day

print(date_decoder('8-MAR-85’))
print(date_decoder('17-Apr-25'))

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 71

Example: date_decoder.py
def date_decoder(date):

months = {'jan': 1, 'feb': 2, 'mar': 3, 'apr': 4,
'may': 5, 'jun': 6, 'jul': 7, 'aug': 8,
'sep': 9, 'oct': 10, 'nov': 11, 'dec': 12}

parts = date.lower().split('-’)
day = int(parts[0])
month = months[parts[1]]
year = 1900 + int(parts[2])
if int(parts[2]) <= 69:

year += 100
return year, month, day

print(date_decoder('8-MAR-85’))
print(date_decoder('17-Apr-25'))

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 72

71

72

4/28/2020

37

Example: date_decoder.py
def date_decoder(date):

months = {'jan': 1, 'feb': 2, 'mar': 3, 'apr': 4,
'may': 5, 'jun': 6, 'jul': 7, 'aug': 8,
'sep': 9, 'oct': 10, 'nov': 11, 'dec': 12}

parts = date.lower().split('-’)
day = int(parts[0])
month = months[parts[1]]
year = 1900 + int(parts[2])
if int(parts[2]) <= 69:

year += 100
return year, month, day

print(date_decoder('8-MAR-85’))
print(date_decoder('17-Apr-25'))

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 73

Example: date_decoder.py
def date_decoder(date):

months = {'jan': 1, 'feb': 2, 'mar': 3, 'apr': 4,
'may': 5, 'jun': 6, 'jul': 7, 'aug': 8,
'sep': 9, 'oct': 10, 'nov': 11, 'dec': 12}

parts = date.lower().split('-’)
day = int(parts[0])
month = months[parts[1]]
year = 1900 + int(parts[2])
if int(parts[2]) <= 69:

year += 100
return year, month, day

print(date_decoder('8-MAR-85’))
print(date_decoder('17-Apr-25'))

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 74

73

74

4/28/2020

38

Example: date_decoder.py
def date_decoder(date):

months = {'jan': 1, 'feb': 2, 'mar': 3, 'apr': 4,
'may': 5, 'jun': 6, 'jul': 7, 'aug': 8,
'sep': 9, 'oct': 10, 'nov': 11, 'dec': 12}

parts = date.lower().split('-’)
day = int(parts[0])
month = months[parts[1]]
year = 1900 + int(parts[2])
if int(parts[2]) <= 69:

year += 100
return year, month, day

print(date_decoder('8-MAR-85’))
print(date_decoder('17-Apr-25'))

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 75

Example: date_decoder.py
def date_decoder(date):

months = {'jan': 1, 'feb': 2, 'mar': 3, 'apr': 4,
'may': 5, 'jun': 6, 'jul': 7, 'aug': 8,
'sep': 9, 'oct': 10, 'nov': 11, 'dec': 12}

parts = date.lower().split('-’)
day = int(parts[0])
month = months[parts[1]]
year = 1900 + int(parts[2])
if int(parts[2]) <= 69:

year += 100
return year, month, day

print(date_decoder('8-MAR-85’))
print(date_decoder('17-Apr-25'))

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 76

75

76

4/28/2020

39

Example: date_decoder.py
def date_decoder(date):

months = {'jan': 1, 'feb': 2, 'mar': 3, 'apr': 4,
'may': 5, 'jun': 6, 'jul': 7, 'aug': 8,
'sep': 9, 'oct': 10, 'nov': 11, 'dec': 12}

parts = date.lower().split('-’)
day = int(parts[0])
month = months[parts[1]]
year = 1900 + int(parts[2])
if int(parts[2]) <= 69:

year += 100
return year, month, day

print(date_decoder('8-MAR-85’))
print(date_decoder('17-Apr-25'))

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 77

Example: Student Database
•A dictionary can contain any data we like – this includes lists

•Imagine we wanted to maintain lists of students organized by major

•We could make a dictionary where the key is major (string) and the value for each key is the list
of student names (a list of strings)

•Consider a function add_stu that takes three arguments: a dictionary structured as described
above, the name of a student, and the major for that student
• The function adds the student to the database

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 78

77

78

4/28/2020

40

Example: Student Database
def add_stu(majors, stu_name, stu_major):

majors.setdefault(stu_major, [])
majors[stu_major].append(stu_name)

•The first line initializes the list of students in a major to be the empty list
• This code is executed the first time a new major is encountered

•The second line locates the list for a particular major
(majors[stu_major]) and then appends that student’s name to
the list with append(stu_name)

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 79

Example: Student Database
•To see how this function works, first create an empty dictionary:

maj_dict = {}

•Then we can call the function to add students one by one:
add_stu(maj_dict, 'Adam', 'CSE')
add_stu(maj_dict, 'Dave', 'CSE')
add_stu(maj_dict, 'Chris', 'ECO')
add_stu(maj_dict, 'Terry', 'AMS')
add_stu(maj_dict, 'Erin', 'CSE')
add_stu(maj_dict, 'Frank', 'ECO’)

major_dict = {‘CSE’: [‘Adam’, ‘Dave’, ‘Erin], ‘ECO’: [‘Chris’, ‘Frank’],
‘AMS’: [‘Terry’]}

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 80

79

80

4/28/2020

41

Example: Student Database
•We can answer several questions now:

• Who is majoring in Computer Science?
• cse_majors = maj_dict['CSE']

• How many students are majoring in Economics?
• num_econ = len(maj_dict['ECO'])

•A dictionary does not support “reverse lookup”
•Multiple keys could actually be mapped to the same value
•For example, consider a dictionary where the keys are book titles and the values are authors

• Since a single author might write several books, there is no way to reverse the title-to-author mapping
and uniquely map authors to book titles

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 81

Example: Student Database
•In the student example above, each student has exactly one major, so we could create a new
dictionary that maps students to majors

•To do this we will need to iterate over the keys of the maj_dict dictionary
•Fortunately, there is a dictionary method that will help with this process:

keys()
stu_dict = {} # map: student -> major
for each major:
for major in maj_dict.keys():

for each student in that major:
for s in maj_dict[major]:

record that student’s major
stu_dict[s] = major

stu_dict = {‘Adam’: ‘CSE’, ‘Dave’: ‘CSE’, ...}

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 82

81

82

4/28/2020

42

Questions?

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 83

83

