
5/14/2020

1

Introduction to
Computational and
Algorithmic Thinking
CHAPTER 7 – RANDOM NUMBERS AND OBJECT ORIENTED
PROGRAMMING

Announcements
This lecture: Random Numbers and Object Oriented Programming

Reading: Read Chapter 7 of Conery

Acknowledgement: Some of this lecture slides are based on CSE 101 lecture notes by Prof. Kevin
McDonald at SBU

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 2

1

2

5/14/2020

2

Games of Chance
•Many games involve chance of some kind:

• Card games with drawing cards from a shuffled deck
• Rolling dice to determine how many places we move a piece on a game board
• Spinning a wheel to randomly determine an outcome

•We expect these outcomes to be random or unbiased – in other words, unpredictable
•Computers can be programmed to generate apparently “random” sequences of numbers and
other quantities for such games and other applications

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 3

Games of Chance
•In this lecture we will explore algorithms for generating values that are apparently random and
unpredictable

•We say “apparently” because we need to use mathematical formulas to generate sequences of
numbers that at the very least appear to be random

•Since we will use an algorithm to generate “random” values, we really can’t say the sequence of
values is truly random

•We say instead that a computer generates pseudorandom numbers

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 4

3

4

5/14/2020

3

Pseudorandom Numbers
•Randomness is a difficult property to quantify

• Is the list [3, 7, 1, 4] more or less random than [4, 1, 7, 3]?
•The algorithm that generates pseudorandom numbers is called pseudorandom number
generator, or PRNG

•The goal is for the algorithm to generate numbers without any kind of apparent predictability
•Python has a built-in capability to generate random values through its random module
•To generate a random integer in the range 1-10:

import random
num = random.randint(1,10) # 10, not 11!

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 5

Modular Arithmetic
•The mod operator, denoted % in Python, will be a key part of generating pseudorandom
numbers

•Suppose we wanted to generate a seemingly random sequence of numbers, all in the range 0
through 11

•Let’s start with the number 0 and store it in a new list named t:
t = [0]

•One basic formula for generating numbers involves:
(1) adding a value to the previously-generated number and then
(2) performing a modulo operation

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 6

5

6

5/14/2020

4

Modular Arithmetic
•For our particular example, we could use 7 as our added value and then mod by 12
•Conveniently, the Python language lets us write t[-1] to mean “retrieve the last element of list
t”

•We can write t[-2] to get the second-to-last element,
•t[-3] to get the third-to-last element, and so on
•So in general we can write t.append((t[-1]+7)%12) to generate and store the “next”
pseudorandom number

•If we put this code inside a loop, we can generate a series of random values and store them in
the list

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 7

Modular Arithmetic
t = [0]
for i in range(15):

t.append((t[-1] + 7) % 12)

•The above code will generate the list:
[0,7,2,9,4,11,6,1,8,3,10,5,0,7,2,9]

•How “random” are these numbers?
• They look pretty random, but we notice that eventually they start to repeat

•Can we improve things?
• Part of the issue is the divisor of 12, but the formula itself is a little too simplistic

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 8

7

8

5/14/2020

5

Modular Arithmetic
•A more general formula for generating pseudorandom numbers is xi+1=(a*xi+c) mod m
•Xi+1 is the “next” random number
•Xi is the most recently generated random number
•i is the position of the number in the list
•a, c and m are constants called the multiplier, increment, and modulus, respectively
•If the values a, c and m are chosen carefully, then every value from 0 through m-1 will appear in
the list exactly once before the sequence repeats

•The number of items in the repetitive part of the list is called the period of the list

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 9

Modular Arithmetic
•We want the period to be as long as possible to make the numbers as unpredictable as possible

•We will implement the above formula, but first we need to explore some new programming
concepts

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 10

9

10

5/14/2020

6

Numbers on Demand
•One possibility for working with random numbers is to generate as many as we need and store
them in a list
• Often, however, in real applications we don’t know exactly how many random numbers we will

ultimately need
• Also, in practice we might not want to generate a very long list of random numbers and store them

•Typically, we need only one or just a few random numbers at a time, so generating thousands or
even millions of them at once is a waste of time and memory

•Rather than building such a list, we can instead generate the numbers one at a time, on demand

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 11

Numbers on Demand
•We will define a function rand() and a global variable x to store the most recently generated
random number
• A global variable is a variable defined outside functions and is available for use by any function in a .py

file
•The value of a global variable is preserved between function calls, unlike local variables, which
disappear when a function returns

•If we want a function to change the value of a global variable, we need to indicate this by using
the global keyword in the function

•If we are only reading the global variable, we do not need to use the global keyword

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 12

11

12

5/14/2020

7

The rand() Function (v1)
•Let’s consider a function for generating random numbers that uses the formula we saw earlier:

x = 0 # global variable
def rand(a, c, m):

global x
x = (a * x + c) % m
return x

•Call the function several times with a=1, c=7, m=12:
rand(1, 7, 12) # returns 7 and updates x to 7
rand(1, 7, 12) # returns 2 and updates x to 2
rand(1, 7, 12) # returns 9 and updates x to 9

•Let’s see why x is updated in this way

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 13

The rand() Function (v1)
•The key line of code is x = (a * x + c) % m
•Initially, x = 0

1. rand(1,7,12): x = (1 * 0 + 7) % 12 = 7
• So, x becomes 7
2. rand(1,7,12): x = (1 * 7 + 7) % 12 = 2
• So, x becomes 2
3. rand(1,7,12): x = (1 * 2 + 7) % 12 = 9
• So, x becomes 9

•The only reason this series of computations works correctly is because the value of x is
preserved between function calls

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 14

13

14

5/14/2020

8

Modules and Encapsulation
•Suppose we wanted to use our new rand() function in several files. We have two options:

• Copy and paste the function to each file (bad idea), or
• Place the file in a .py by itself (or with other functions) to create a module that can be imported using

an import statement (the right way)
•We should place our function in a module, along with the global variable x
•This global variable will be “hidden” inside the module so that there is no danger of a “name
clash”, meaning that other modules could have their own global variables named x if they want
to

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 15

Modules and Encapsulation
•This idea of gathering functions and their related data values (variables) into a single package is
called encapsulation

•It’s an extension of the concept called abstraction we studied earlier in the course
•We know that the math module has some useful functions and constants, like sqrt() and pi
•A module like math is an example of a namespace, a collection of names that could be names of
functions, objects or anything else in Python that has a name
• A module/namespace is one way of implementing the concept of encapsulation in Python

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 16

15

16

5/14/2020

9

Modules and Encapsulation
•To create a new module, all we need to do is save the functions and variables of the module in a
file ending in .py
• For example, if we were to save the rand() function in the file prng.py, we could then import the

rand() function in a new Python program by typing import prng at the top of the new program
•Next slide shows a revised version of our rand() function that encapsulates the function in a
module and stores the values of x, a, c and m as global variables

•This means the user no longer needs to pass a, c, or m as arguments anymore
•We will also add a new function reset() to reset the PRNG to its starting state

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 17

The rand() Function (v2)

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 18

x = 0
a = 81
c = 337
m = 1000

def rand():
global x
x = (a * x + c) % m
return x

def reset(mult, inc, mod):
global x, a, c, m
x = 0
a = mult
c = inc
m = mod

17

18

5/14/2020

10

The rand() Function (v2)
x = 0
a = 81
c = 337
m = 1000

•Examples:
rand(): (81 * 0 + 337) % 1000 = 337
rand(): (81 * 337 + 337) % 1000 = 634
rand(): (81 * 634 + 337) % 1000 = 691

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 19

The rand() Function (v2)
•We can change the values of a, c, and m by calling the reset()
•function. Example: reset(19, 4, 999), which also sets x = 0.

•Now we will generate a different sequence of random numbers:
1. rand(): (19 * 0 + 4) % 999 = 4
2. rand(): (19 * 4 + 4) % 999 = 80
3. rand(): (19 * 80 + 4) % 999 = 525

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 20

19

20

5/14/2020

11

Games with Random Numbers
•Suppose we wanted to simulate the rolling of a six-sided die in a board game
•We would want to generate integers in the range 1 through 6, inclusive
•Our function rand() generates values outside this range, however
•We can solve this problem using an expression like rand() % 6 + 1
•The expression rand() % 6 gives us a value in the range 0 through 5, which we can then “shift
up” by adding 1

•Why not do rand() % 7 instead?

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 21

Games with Random Numbers
•If we always initialize x, a, c, and m to the same values, then every program that uses the rand()
function will get the same exactly sequence of pseudorandom values
Instead, we could allow someone using our code to set the starting value of x, which we call the
seed of the pseudorandom number generator
Another option is we can have the computer pick the seed by using the system clock
The time module has a function called time() which returns the number of seconds since
January 1, 1970
Fractions of a second are also included in the returned value

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 22

21

22

5/14/2020

12

Games with Random Numbers
•Our revised module shown on the right

uses time.time() to pick a random seed

•See random_numbers.py

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 23

import time

a = 81

c = 337

m = 1000

x = int(time.time()) % m

def rand():

global x

x = (a * x + c) % m

return x

Random Numbers in a Range
•In general, how can we generate random integers from an arbitrary range?
•The formula is surprisingly simple:

rand() % (high – low + 1) + low

•For example, suppose we wanted to generate a value in the range -1 through 10, inclusive
•The formula indicates we should use this code:

rand() % (10 - (-5) + 1) + (-5)

•Simplifying gives us: rand() % 16 – 5

•See random_numbers.py

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 24

23

24

5/14/2020

13

List Comprehensions
•Python features a very compact syntax for generating a list called a list comprehension

• We write a pair of square brackets and inside the brackets put an expression that describes each list
item

•For example, to make a list of numbers from 1 to 10 write [i for i in range(1,11)]
•To make a list of the first 10 perfect squares we could write [i**2 for i in range(1,11)]
•In general, we write an expression that describes each new item in the new list and a loop that
describes a set of existing values to work from

•A list of 10 random numbers:
[rand() for i in range(10)]

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 25

List Comprehensions
•Suppose we wanted to take a list of words and capitalize them all:

names = ['bob', 'DANE', 'mikey', 'ToMmY']
names = [s.capitalize() for s in names]

•names would become ['Bob', 'Dane', 'Mikey', 'Tommy’]

•Or perhaps we wanted to extract the first initial of each person and capitalize it:
initials = [s[0].upper() for s in names]

•initials would be ['B', 'D', 'M', 'T’]

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 26

25

26

5/14/2020

14

Random Shuffles
•Suppose we needed the ability to randomly permute (shuffle) a list of items, such as a deck of 52
playing cards

•Let’s explore how we might write a function that does exactly this
•The RandomLab module defines a class called Card
•A class defines a new type of object in an object-oriented programming language like Python
•We use a special method called the constructor to create (construct) new objects of the class

from PythonLabs.RandomLab import Card
card = Card()

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 27

The Card Class
•A Card object has a separate rank and suit, which we can query using the rank() and suit()
methods, respectively

•The 2 through Ace are ranked 0 through 12
•The suits are mapped to integers as follows:

• Clubs: 0
• Diamonds: 1
• Hearts: 2
• Spades: 3

•For example, for a Card object representing the 9 of Spades, rank() would return 7 and suit()
would return 3

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 28

27

28

5/14/2020

15

The Card Class
•The ranks and suits are numbered so that we can uniquely identify each card of a standard 52-
card deck
• When calling the constructor to create a Card object, we provide a number in the range 0 through 51

to identify which card we want
•Examples:

• Card(0) and Card(1) are the 2 and 3 of Clubs, respectively
• Card(50) and Card(51) are the King and Ace of Spades, respectively
• Card(46) is 9 of Spades

•print(Card(51)) would output A♠ (yes, including that Spade symbol!)

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 29

The Card Class
•We can use a list comprehension to generate all 52 cards and store them in a list:

deck = [Card(i) for i in range(0,52)]

•With slicing we can take a look at just the first 5 by appending [:5] to the name of the variable
•This notation means “slice out all the elements of the list up to (but not including) the element
at index 5”

print(deck[:5])

•Output: [2♣, 3♣, 4♣, 5♣, 6♣]

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 30

29

30

5/14/2020

16

Shuffling Card Objects
•The order of the cards generated by the list comprehension (i.e., sequential order) is only one
particular ordering or permutation of the cards

•We want to define a function that will let us permute a list to generate a more random ordering
of the items in the list

•A simple algorithm for permuting the items in a list is to iterate over the list and exchange each
element with a random element to its right

•This is most easily seen by example, as on the next slide

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 31

Shuffling Card Objects
Iterate over the entire list deck (with i as
the loop variable and index), swapping a
random item to the right of i with deck[i]

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 32

31

32

5/14/2020

17

Shuffling Card Objects
•This shuffling algorithm is very easy to implement with the help of a function that will choose a
random item to the right of deck[i]

•The function randint(low, high) from the random module generates a random integer in
the range low through high (inclusive of both low and high)

•The permute function will shuffle any list of items:
import random
def permute(a):

for i in range(0, len(a)-1):
r = random.randint(i, len(a)-1)
a[i], a[r] = a[r], a[i] # swap items

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 33

Shuffling Card Objects
import random
def permute(a):

for i in range(0, len(a)-1):
r = random.randint(i, len(a)-1)
a[i], a[r] = a[r], a[i] # swap items

•r = random.randint(i, len(a)-1) picks the random index, r, that is to the right of i (or might
choose i itself, meaning that a[i] doesn’t move)

•a[i], a[r] = a[r], a[i] swaps a[i] with the randomly chosen item to its right
•We would call this function with permute(deck) to shuffle our list of Card objects

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 34

33

34

5/14/2020

18

Defining New Objects
•The Card class we have been working with defines a new kind of object we can use in programs
•In object-oriented programming, a class determines the data and operations associated with an
object

•For example, for a playing card object we need some way to store the rank and suit of a card;
these are its data attributes

•Operations for a playing card might include code that lets us print a playing card on the screen or
retrieve the card’s rank and suit

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 35

Defining New Objects
•The data values associated with a particular object are called instance variables
•We say that an object is an instance of a class

• For example, each of the 52 Card objects is an independent instance of the Card class
• As such, each Card object has its own copies of the instance variable that store the object’s rank and

suit
•The operations associated with an object are called methods
•So, a class defines the data properties and methods that an object of the class has

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 36

35

36

5/14/2020

19

Defining New Objects
Let’s see an example where we create three distinct Card objects in a program:

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 37

Defining New Objects

•Three Card objects were constructed. They are referenced using the variables c1, c2 and c3 in
main as shown on the left

•The objects as they might exist in the computer memory are shown in the middle of the diagram
•Rather than storing the rank and suit separately, they are combined into a single integer called
_id

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 38

37

38

5/14/2020

20

Defining New Objects

•Prepending an underscore to a variable indicates that _id is an instance variable; this is a naming
convention, not a strict rule

•To retrieve the rank or suit, we need to call the methods rank() or suit(), as depicted on the right
•Example call: c1.rank() since rank() is a method, not a function

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 39

Defining New Objects
•To define a new class we usually include the following aspects:

• One or more instance variables
• One or more methods that perform some operation or execute some algorithm
• A __init__ method, which initializes (gives starting values to) the instance variables
• A __repr__ method, which defines a string representation of an object that is suitable for printing on

the screen

•Let’s step through building the Card class from the ground up

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 40

39

40

5/14/2020

21

Building the Card Class
•The code we build up in piecemeal fashion will all eventually be saved in a file named Card.py
•We begin by writing a class statement:

class Card:

•Next we write the __init__ method. The self keyword refers to the object itself.
•def __init__(self, n):
• self._id = n
•The __init__ method is called the class’ constructor because it is used to construct new objects
of the class

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 41

Building the Card Class
•Now we can write the rank() and suit() methods
•They translate the _id number into the rank and suit of a card

def suit(self):
return self._id // 13

def rank(self):
return self._id % 13

•This encoding ensures that all 13 cards of a single suit are placed together in consecutive order
•Now let’s write a simple __repr__ method

def __repr__(self):
return 'Card #' + str(self._id)

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 42

41

42

5/14/2020

22

Building the Card Class
•The Card class so far:

class Card:
“”” Instance variables: _id “””
def __init__(self, n):

self._id = n

def suit(self):
return self._id // 13

def rank(self):
return self._id % 13

def __repr__(self):
return 'Card #' + str(self._id)

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 43

Building the Card Class (next)
•Suppose we created card #43: c1 = Card(43)
•If we go ahead and print out c1, we will get output like this:
•Card #43
•That’s not very informative, so we’ll have to fix it later
•We can write a function new_deck() that creates a list of 52 playing-card objects. This function
is not part of the Card class itself. It is an example of use code of the Card class.
def new_deck():

return [Card(i) for i in range(52)]

•An example call to this function:
deck = new_deck()

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 44

43

44

5/14/2020

23

Building the Card Class
•Another improvement we can make is to add special methods that allow us to compare Card
objects

•If we want to be able to sort Card objects, we must provide the __lt__() method, which tells us
if one object is “less than” another:
def __lt__(self, other):

return self._id < other._id

•__eq__() defines what it means for two Card objects to be “equal to” each other:
def __eq__(self, other):

return self._id == other._id

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 45

Building the Card Class
•For example, consider the following objects:

c1 = Card(1)
c2 = Card(4)

•The expression c1 < c2 would be True, but c1 == c2 would be False
•Now that we can compare Card objects, we can sort them using the sorted function

• sorted makes a copy of a list and then sorts the copy:
cards_sorted = sorted(cards)

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 46

45

46

5/14/2020

24

Building the Card Class
•The Card class defines an application program interface or API: a set of related methods that
other programmers can use to build other software

•Also, we are applying the concept of encapsulation by gathering all the code that defines a
Card object in one place

•On that topic, it can be useful to define class variables, values that pertain to a particular class
but are not instance variables

•For our Card class it would be useful if we could print symbols representing the suits: ♣♦♥
♠

•In Python we have access to many thousands of symbols
•We can access them by giving the correct numeric codes
•Let’s add two class variables: suit_sym and rank_sym to Card class

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 47

Building the Card Class
•suit_sym = {0: '\u2663', 1: '\u2666’,

2: '\u2665', 3: '\u2660’}
•If we were to print suit_sym, we would get this output:
•{0: '♣', 1: '♦', 2: '♥', 3: '♠'}
•The codes for various symbols can be found on the Internet by searching for “Unicode
characters”. See https://www.rapidtables.com/code/text/unicode-characters.html

•Likewise, we can define a dictionary for all the ranks:
•rank_sym = {0: '2', 1: '3', 2: '4', 3: '5', 4:

'6', 5: '7', 6: '8', 7: '9', 8: '10', 9: 'J', 10:
'Q', 11: 'K', 12: 'A'}

•Our goal now is to be able to print a Card object in a form like “2♣”.
Let’s see how to do that.

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 48

47

48

5/14/2020

25

Building the Card Class
•We will change our definition of the __repr__ method to this:

def __repr(self):
return Card.rank_sym[self.rank()] +

Card.suit_sym[self.suit()]

•Now, when we print a Card object, we will get output like 2♣, A♦, 8♠, J♠, etc.

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 49

Exceptions and Exception-handling
•What if another programmer using our class inadvertently gives a value outside the range 0
through 51 for n when constructing a Card object?
• The __init__ method will accept the value, but it really shouldn’t

•We can solve this problem by adding exception handling to our code
• An exception is an unexpected event or error that has been detected
• We say that the program has raised an exception
• Let’s have the __init__ method raise an exception if an invalid value is given for n

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 50

49

50

5/14/2020

26

Exceptions and Exception-handling
def __init__(self, n):

if n in range(0, 52):
self._id = n

else:
raise Exception('Card number must be in the range 0-51.’)

•The new version of __init__ verifies that the argument n is valid

•If not, it raises the exception and includes a diagnostic message of sorts

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 51

Exceptions and Exception-handling
•Consider a function now that a programmer might use to make new cards that catches any
exception that might be thrown by the __init__ method:
def make_card(n):

try:
return Card(n)

except Exception as e:
print('Invalid card: ' + str(e))
return None

•If we call make_card(55), we get this output:
Invalid card: Card number must be in the range 0-51.

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 52

51

52

5/14/2020

27

Exceptions and Exception-handling
•This concludes our development of the Card class

•See card.py for the completed Card class and use_card.py and use_card2.py for some tests

•Note: To run, drag use_card.py into PyCharm and run it. Be sure that card.py is in the same
folder where use_card.py is located

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 53

Example: Acronym Generator (v1)
•Let’s explore a function that will create an acronym from the first letter of each “long” word in a
list

•Define a “long” word to be any word with more than two letters

•After studying this first version, we will look at a second version that affords a little extra
flexibility in creating acronyms

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 54

53

54

5/14/2020

28

Example: acronym1.py
def acronym(phrase):

result = ‘’
words = phrase.split()
for w in words:

if len(w) >= 3: # keep only long words
result += w.upper()[0]

return result

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 55

Trace: acronym() (version 1)
•Let’s trace the execution of this function for one example:

acronym('United States of America’)
def acronym(phrase):

result = ‘’
words = phrase.split()
for w in words:

if len(w) > 3:
result += w.upper()[0]

return result

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 56

55

56

5/14/2020

29

Trace: acronym() (version 1)
•Let’s trace the execution of this function for one example:

acronym('United States of America’)
def acronym(phrase):

result = ‘’
words = phrase.split()
for w in words:

if len(w) > 3:
result += w.upper()[0]

return result

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 57

Trace: acronym() (version 1)
•Let’s trace the execution of this function for one example:

acronym('United States of America’)
def acronym(phrase):

result = ‘’
words = phrase.split()
for w in words:

if len(w) > 3:
result += w.upper()[0]

return result

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 58

57

58

5/14/2020

30

Trace: acronym() (version 1)
•Let’s trace the execution of this function for one example:

acronym('United States of America’)
def acronym(phrase):

result = ‘’
words = phrase.split()
for w in words:

if len(w) > 3:
result += w.upper()[0]

return result

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 59

Trace: acronym() (version 1)
•Let’s trace the execution of this function for one example:

acronym('United States of America’)
def acronym(phrase):

result = ‘’
words = phrase.split()
for w in words:

if len(w) > 3: # True
result += w.upper()[0]

return result

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 60

59

60

5/14/2020

31

Trace: acronym() (version 1)
•Let’s trace the execution of this function for one example:

acronym('United States of America’)
def acronym(phrase):

result = ‘’
words = phrase.split()
for w in words:

if len(w) > 3:
result += w.upper()[0]

return result

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 61

Trace: acronym() (version 1)
•Let’s trace the execution of this function for one example:

acronym('United States of America’)
def acronym(phrase):

result = ‘’
words = phrase.split()
for w in words:

if len(w) > 3:
result += w.upper()[0]

return result

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 62

61

62

5/14/2020

32

Trace: acronym() (version 1)
•Let’s trace the execution of this function for one example:

acronym('United States of America’)
def acronym(phrase):

result = ‘’
words = phrase.split()
for w in words:

if len(w) > 3: # True
result += w.upper()[0]

return result

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 63

Trace: acronym() (version 1)
•Let’s trace the execution of this function for one example:

acronym('United States of America’)
def acronym(phrase):

result = ‘’
words = phrase.split()
for w in words:

if len(w) > 3:
result += w.upper()[0]

return result

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 64

63

64

5/14/2020

33

Trace: acronym() (version 1)
•Let’s trace the execution of this function for one example:

acronym('United States of America’)
def acronym(phrase):

result = ‘’
words = phrase.split()
for w in words:

if len(w) > 3:
result += w.upper()[0]

return result

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 65

Trace: acronym() (version 1)
•Let’s trace the execution of this function for one example:

acronym('United States of America’)
def acronym(phrase):

result = ‘’
words = phrase.split()
for w in words:

if len(w) > 3: # False
result += w.upper()[0]

return result

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 66

65

66

5/14/2020

34

Trace: acronym() (version 1)
•Let’s trace the execution of this function for one example:

acronym('United States of America’)
def acronym(phrase):

result = ‘’
words = phrase.split()
for w in words:

if len(w) > 3:
result += w.upper()[0]

return result

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 67

Trace: acronym() (version 1)
•Let’s trace the execution of this function for one example:

acronym('United States of America’)
def acronym(phrase):

result = ‘’
words = phrase.split()
for w in words:

if len(w) > 3: # True
result += w.upper()[0]

return result

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 68

67

68

5/14/2020

35

Trace: acronym() (version 1)
•Let’s trace the execution of this function for one example:

acronym('United States of America’)
def acronym(phrase):

result = ‘’
words = phrase.split()
for w in words:

if len(w) > 3:
result += w.upper()[0]

return result

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 69

Trace: acronym() (version 1)
•Let’s trace the execution of this function for one example:

acronym('United States of America’)
def acronym(phrase):

result = ‘’
words = phrase.split()
for w in words:

if len(w) > 3:
result += w.upper()[0]

return result

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 70

69

70

5/14/2020

36

Example: Acronym Generator (v2)
•Python allows function arguments to have default values

• If the function is called without the argument, the argument gets its default value
• Otherwise, the argument’s value is given in the normal way

•We have seen a few examples of functions that have optional arguments
•A good example is the round() function, which takes two arguments: the value to round and an
optional argument that indicates how many digits after the decimal point we want
• If the second argument is not provided, the number of digits defaults to 0, e.g.,

• round(4.56324) = 5
• round(4.56324, 2) = 4.56

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 71

Example: Acronym Generator (v2)
The second version of acronym takes an optional argument, include_shorts, that tells the
function to include the first letter of all words (including short words), but short words will not
be capitalized if they are included
The first version of acronym simply discarded all short words

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 72

71

72

5/14/2020

37

Example: acronym2.py
def acronym(phrase, include_shorts=False):

result = ‘’
words = phrase.split()
for w in words:

if len(w) > 3:
result += w.upper()[0]

elif include_shorts:
result += w.lower()[0]

return result

•By default, the optional argument is False, causing short words to be excluded
•When the optional argument is True and w is a short word, the first letter of the word in
lowercase is concatenated to result

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 73

Example: acronym() (v2)
•Examples:

•acronym(‘United States of America’) still returns ‘USA’
•acronym(‘United States of America’, True) returns
•‘USoA’

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 74

73

74

5/14/2020

38

Optional Arguments
•As another example, suppose we want to make a revised version of the bmi() function from
earlier in the course:
def bmi(weight, height):

return (weight * 703) / (height ** 2)

•This version of bmi() assumes weight is given in pounds and height in total inches
•Suppose instead we want to give the programmer the option to use metric or standard (English)
units

•We can add a third, optional argument, units, that defaults to metric if the programmer doesn’t
give a third argument

•Let’s see the function on the next slide

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 75

Example: bmi_v4.py
def bmi(height, weight, units = 'metric’):

if units == 'metric’:
return weight / height**2

elif units == 'standard’:
return (weight * 703) / (height ** 2)

else:
return None

•Examples: Return Value:
bmi(100, 150, ‘standard’) 10.545
bmi(100, 150) 0.015
bmi(100, 150, ‘metric’) 0.015
bmi(100, 150, ‘unknown’) None

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 76

75

76

5/14/2020

39

Questions?

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 77

77

