
5/26/2020

1

Introduction to
Computational and
Algorithmic Thinking
CHAPTER 8 – DATA REPRESENTATION AND COMPRESSION

Announcements
This lecture: Data Representation and Compression

Reading: Read Chapter 8 of Conery

Acknowledgement: Some of this lecture slides are based on CSE 101 lecture notes by Prof. Kevin
McDonald at SBU

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 2

1

2

5/26/2020

2

Data and Computers
•Computers are multimedia devices, dealing with a vast array of information categories

• Information is data (basic values, facts) that has been organized or processed into useful form
•Computers store, present and help us modify various kinds of data: numbers, text, audio, images
and graphics, video

•Information can be represented in one of two ways: analog or digital
•Analog data: a continuous representation, analogous to the actual information it represents
•Digital data: a discrete representation that breaks the information up into separate elements

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 3

Analog vs. Digital

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 4

3

4

5/26/2020

3

Representing Numbers
Human beings have contrived a wide variety of ways to represent the digits that make up
numbers

Egyptian hieroglyphs:

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 5

Babylonian numerals:

Roman numerals:
MMXVII = 2017

Many others!

References:
• http://goo.gl/BSrWTH
• http://goo.gl/r8NcKF
• Wikipedia

Positional Notation
•The modern Western style and some other styles of writing numbers use positional notation

• The position of a digit determines how much it contributes to the number’s value
•With decimal (base 10), place-values are powers of 10:

…, 103, 102, 101, 100, 10-1 , 10-2, 10-3, …
…, 1000s, 100, 10s, 1/10 s, 1/100 s, 1/1000 s, …

•642.15 really means (6 x 102) + (4 x 101) + (2 x 100) + (1 x 10-1) + (5 x 10-2)
•Early computers represented numbers with base 10, but they were very unreliable. It was too
hard to make the computer maintain 10 distinct voltages for the 10 digits.

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 6

5

6

5/26/2020

4

Binary Numbers
•Modern digital computers use binary digits (base-2 numbers: 0 and 1)

• The word bit is short for binary digit
•The hardware determines how bits are stored

• Hard drive: magnetized spots on surface of disk
• Flash drive: presence/absence of electrons in a memory cell
• Optical disc (CD/DVD): pits and lands (flat spots)

•As computational thinkers, we do not need to worry so much about how the bits are stored
•Instead, we will concern ourselves about what bits are stored

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 7

Binary Numbers
With binary we have just two digits, 0 and 1, and the place-values are powers of 2:

…, 23, 22, 21, 20, 2-1, 2-2, 2-3, …

..., 8s, 4s, 2s, 1s, 1/2s, 1/4s, 1/8s, …

The number 1011.0112 written in decimal is:

(1 x 23) + (0 x 22) + (1 x 21) + (1 x 20) + (0 x 2-1) + (1 x 2-2) + (1 x 2-3)

= 8 + 0 + 2 + 1 + 0 + 1/4 + 1/8 = 11.37510

Important observation: 1011.0112 and 11.37510 are two different representations of the same
quantity

All data in a modern machine is stored using binary numbers

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 8

7

8

5/26/2020

5

Decimal Binary Conversion
•To convert a decimal number to binary, perform these steps:

1. Repeatedly divide the decimal number by 2.
2. Set aside the remainder of each division.
3. Use the quotient for the next round of division.
4. When the quotient reaches 0, write down all of the remainders in order from last to first. This value is

your answer.
•This algorithm is most easily understood by seeing some examples.

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 9

Decimal Binary Example #1
Convert 12310 to binary

123 / 2 = 61 rem. 1

61 / 2 = 30 rem. 1

30 / 2 = 15 rem. 0

15 / 2 = 7 rem. 1

7 / 2 = 3 rem. 1

3 / 2 = 1 rem. 1

1 / 2 = 0 rem. 1

Answer: 11110112

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 10

Note that we write the remainders in the reverse
order of how they are generated

9

10

5/26/2020

6

The Function dec2bin()
Let’s see a function dec2bin() that returns a string of 0s and 1s giving the binary
representation of an integer
def dec2bin(decimal):

binary = ""
while decimal > 0:

remainder = decimal % 2
binary = str(remainder) + binary
decimal = decimal // 2

return binary

print(dec2bin(23)) # "10111"
print(dec2bin(100)) # "1100100"

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 11

data_rep.py

Encoding Data (next)
•To store information in a computer’s memory we have to encode it somehow: an encoding is a
pattern of 0s and 1s
• The pattern is a representation of some real-world object, like a letter, number, sound clip, or video

•Encoding is not the same as encryption
• Both use codes, but in this slide set we will explore standard ways of representing data, not hiding data

•A set of k bits can represent up to 2k items. Let’s see why.
Each bit can be 0 or 1 (two options)
With 2 bits, we can represent 22 = 4 items
With 3 bits, we can represent 23 = 8 items
…

•With k bits, we can represent 2k items

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 12

11

12

5/26/2020

7

Representing Characters
•ASCII (American Standard Code for Information Interchange) includes 7-bit and 8-bit schemes
for representing characters used in the English language

•Each letter, number, punctuation mark, etc. is mapped to a 7-bit number
• See ASCII.txt

•Examples: capital letter “A” is 65; lowercase letter “a” is 97
•A newer scheme called Unicode includes codes for 135 alphabets

• Modern languages (Greek, Cyrillic, Arabic, Hebrew, Korean, Chinese, Japanese, ...) and ancient
languages (hieroglyphics, runes, ...)

• Also include technical symbols, emoji, and other symbols

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 13

Representing Characters
•Here are three ways to include a Unicode symbol in a Python string:
1. Copy and paste text from an e-mail, a web page, etc.
2. Use a function named chr (short for “character”)

• Pass it a code number. It will return a one-letter string containing that symbol. Example: chr(9829) gives
'♥'

• Find code numbers at www.charbase.com or similar websites that have lists of Unicode symbols
3. Use an escape sequence ‘\uXXXX’ where XXXX is the 4-digit hexadecimal (base 16) code

number
•'I \u2665 cats' is 'I cats’
•See data_rep.py for ♥more examples

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 14

13

14

5/26/2020

8

Hexadecimal Numbers
•In some software development it’s more natural to write numbers in base 16, called
hexadecimal

•With hexadecimal we have 16 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and the letters A through F for ten
through fifteen

•Place-values in hexadecimal are powers of 16:
…, 163, 162, 161, 160, 16-1, 16-2, 16-3, …

•51E16 = (5 × 162) + (1 × 161) + (14 × 160) = 1,31010

•FAD16 = (15 × 162) + (10 × 161) + (13 × 160) = 4,01310

•Changing the base of a number doesn’t change the magnitude (value) of a number
•The representation for a number gets longer as the base decreases.

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 15

Same Value, Different Base

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 16

15

16

5/26/2020

9

Hexadecimal Numbers
•Hexadecimal is used widely in web design for giving colors

• You can use it with Python too, as we just saw
•When giving the Unicode for a character as an escape sequence with \u, we always use
hexadecimal

•In contrast, the chr() function expects the decimal representation
•For the heart symbol above, we used 9829 (base 10) for chr(), but 2665 (base 16) for the escape
sequence

•The related ord() function returns the Unicode value of a character in decimal format:
• ord('A') returns 65 and ord('x') returns 120

•See data_rep.py for more examples

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 17

Hexadecimal Numbers
•The binary representation for a string can be hard to read:
• 01001001 00100111 01101101 00100000 01100001

01100110 01110010 01100001 01101001 01100100
00100000 01101111 01100110 00100000 01100011
01101111 01110111 01110011 00101110

•It’s a little easier to deal with codes in hexadecimal:
49 27 6D 20 61 66 72 61 69 64 20 6F 66 20 63 6F 77 73 2E

•Recall that in hexadecimal we have 16 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and the letters A through F
for ten through fifteen

•Note that each hexadecimal digit corresponds with four binary digits (bits)

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 18

17

18

5/26/2020

10

Binary ↔ Hexadecimal
•To convert a hexadecimal number to a binary number, simply convert each
digit in the hexadecimal number into a four-digit binary number.

•For example:
D2B516 = 11010010101101012

•To convert a binary number to a hexadecimal, convert every four binary
digits from right to left in the binary number into a hexadecimal digit.

•For example: 0100011111102 = 47E16

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 19

Groups of Bits
•A byte is a collection of 8 bits

• A 7-bit ASCII value fits in single byte
•A 32-bit integer requires 4 bytes (32 ÷ 8 = 4)
•A central processing unit (CPU) operates on several bytes at a time, called a word

• A word is a collection of two or more bytes
• Typical word size are 32 bits (4 bytes) and 64 bits (8 bytes)

•Memory capacity is often described in terms of megabytes or gigabytes

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 20

19

20

5/26/2020

11

Error Detection
•Errors in values can be caused by circumstances beyond our control

• The storage medium itself has a flaw or is deteriorating
• Data can be corrupted by interference during transfer over wires or wirelessly
• Even solar activity itself can affect electronic devices and disrupt electronic communication

•The general method for detecting errors is to add extra information to the data
• Add extra data to a document before storing it in a file
• Append error checking data to a message while sending it

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 21

Error Detection
•The basic procedure for enabling error-free communication:

1. Sender adds error-checking information
2. After receiving the message, the receiver analyzes the message along with the extra data to see if an

error occurred
3. If an error occurred, the receiver will ask the sender to send the message again

•A simple method for error-checking is to use a parity bit
• Add one extra bit to the end of the text
• Here, “text” means any string: an entire message or a single character

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 22

21

22

5/26/2020

12

Error Detection
•The value of the extra bit should make the total number of '1' bits an even number

• This property is called even parity
•Example: parity bits for 8-bit ASCII characters

• A = 01000001. There are two 1 bits, so attach a 0 as the parity bit (the total # of 1s remains two)
• C = 01000011. There are three 1 bits, so attach a 1 as the parity bit (bringing the total # of 1s to four)

•Example: parity bit for a piece of DNA (using ASCII)
• ATG = 01000001 01010100 01000111 + 1
• The binary code for the entire string contains 9 1's, so we add one more 1 bit to make an even number

of 1s

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 23

Error Detection
•The receiver treats the parity bit like any other bit in the incoming message

• It is included in the count of the number of 1 bits
• To get the message contents, the receiver discards the last bit

•Example: when sending an 8-bit ASCII 'C', the bit stream is 010000111: the digits in the code for
'C' plus a parity bit
• The receiver reads 9 bits and sees there was an even number of 1 bits; no error detected
• The receiver discards the 9th bit
• The remaining bits are the contents of the message: 01000011, which is the ASCII code for 'C’

•Note: It is a very simple scheme. It can only be used to detect single or any other odd number
(i.e., three, five, etc.) of errors in the output. An even number of flipped bits (errors) will make
the parity bit appear correct even though the data is erroneous.

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 24

23

24

5/26/2020

13

Aside: Communication Protocols
•For this error-checking plan to work, the sender and receiver both have to agree on a
communication protocol
• The protocol defines a message structure and also specifies what actions are taken during the

transmission or receipt of a message
• In our simple protocol, the sender and receiver agree in advance the parity bit is the last bit

•Two of the most important protocols used today are Transmission Control Protocol (TCP) and
Internet Protocol (IP)
• Used extensively in Internet communication, including the Web and online video games

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 25

Computing Parity Bits
•How can we write a function that computes the parity bit for a message?
•Deciding whether to attach a 1 or a 0 to the end of a code is simple using a logic function called
“exclusive or”, abbreviated as XOR
• Normally, a or b is true if either a or b is true, or if both of a and b are true
• The XOR of variables a and b is true if either one of them is true, but not if both are true

•XOR in Python is denoted using the caret, ^

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 26

25

26

5/26/2020

14

Computing Parity Bits
•It is uncommon in programming to use XOR in Boolean expressions (True/False expressions)
•Rather, XOR is used (almost) exclusively in bitwise operations, which are expressions that involve
0s and 1s

•In Python, bitwise-and is denoted by the ampersand, &, and bitwise or is denoted by the vertical
bar, or pipe, |

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 27

Computing Parity Bits
•Let’s consider a function that computes a parity bit. Here’s the algorithm:
1. Initialize the return value p to 0.
2. Iterate over all the bits in the input code, updating p using the XOR operator: p = p ^ bit

a. If a bit is 0, it won’t change p.
b. But if it's a 1, it sets p to the opposite value.

•Here’s why this works. We start with p = 0. Every time we see a 1, we “flip” the parity bit by
replacing p with
p XOR 1.

•For example, if the data contain three 1s, then p will flip three times: p = 0 1 0 1, so
the parity bit will be 1

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 28

27

28

5/26/2020

15

The parity() Function
•Given a string containing only 0s and 1s, the parity() function computes the parity bit

def parity(bits):
p = 0
for bit in bits :

p = p ^ int(bit)
return p

•Examples:
•parity(‘1000001’) # returns 0
•parity(‘1000011’) # returns 1
•See data_rep.py

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 29

Groups of Bits
•We can define our own encoding schemes for objects
•Suppose we wanted to encode DNA sequences, which are strings containing the letters A, C, G,
and T

•We need only 2 bits to represent 4 different things
•We could create a dictionary to map a letter to a 2-bit code
•Example: “A” 00

“C” 01
“G” 10
“T” 11

•We will now look at a famous algorithm for compressing data which produces a new, original
binary encoding scheme for a given input data-set

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 30

29

30

5/26/2020

16

Text Compression
•Data compression algorithms reduce in the amount of space needed to store a piece of data
•A data compression technique can be:

• Lossless (no information lost)
• Lossy (information lost)

•There are many algorithms for compressing files (including photos, images and other types of
data) but we’ll focus on a lossless technique for text compression called Huffman coding

•We will first need to explore a few data structures before we can understand how Huffman
coding works

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 31

Binary Trees (next)
•In mathematics and computer science, a tree consists of data values stored at nodes, which are
connected to each other in a hierarchical manner by edges

•Like a family tree, a tree shows parent-child relationships
•Each node in the tree, except for a special node called the root, has exactly one parent node
•Nodes can be connected to 0 or more child nodes immediately beneath them in the tree
•A node with at least one child is called an interior node (colored ‘w’hite in the figure on the next
slide)

•Towards the bottom of a tree we find nodes with no children; such nodes are called leaves
(shaded ‘g’ray in the figure on the next slide)

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 32

31

32

5/26/2020

17

Binary Trees
•In a binary tree, every node has either 0, 1 or 2 children

•Used in this context, the word “binary” refers to the
maximum number of children that a node can have. It
does not refer to bits.

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 33

Huffman Coding
•Huffman coding is a scheme for encoding letters based on the idea of using shorter codes for
more commonly used letters
• ASCII uses 7 or 8 bits to store every letter, regardless of how often that letter is used in real text
• Imagine if we could find a way to store commonly used letters like R, S, T, N, L, E, etc. using fewer bits

•For large data-sets consisting only of characters, the potential savings is huge
• This is what Huffman coding accomplishes

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 34

33

34

5/26/2020

18

Huffman Coding
•A Huffman tree is a binary tree that is at the heart of Huffman coding

•Inside of each node of a Huffman tree we store (i) a letter and (ii) the frequency of how often
that letter appears in words

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 35

The Hawaiian Alphabet
•We will use the Hawaiian alphabet as part of a running example to understand how Huffman
coding works

•Hawaiian words are spelled with the five vowels A, E, I, O, and U, and only the seven consonants
H, K, L, M, N, P, and W

•The ' symbol, called the okina, is used between two vowels when they should be pronounced as
separate syllables
• Example: “a’a” is pronounced “ah-ah”

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 36

35

36

5/26/2020

19

The Hawaiian Alphabet
•The table to the right shows the frequency of each letter in
Hawaiian words

•We will exploit this knowledge to find an efficient encoding
of the 13 symbols

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 37

Data Structures for Huffman Coding
•In an earlier lecture we learned about a special kind of list called a priority queue
•Every item inserted into a priority queue has a corresponding numerical priority
•The priority queue always makes sure that the item with highest priority is at the front of the list
•The PriorityQueue class in the SpamLab implements the priority queue concept
•The insert() method adds an item to the priority queue
•The pop() method removes the item at the front of the list, which is guaranteed to be the item
of highest priority

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 38

37

38

5/26/2020

20

Data Structures for Huffman Coding
•We will use a priority queue to help us build a Huffman tree

•In the BitLab lab there is a class called Node we can use to build Huffman trees
• When creating a Node object, we give the letter and the letter’s frequency, as in this example:

from PythonLabs.BitLab import Node
leaf = Node('M', 0.032)

•The above Node object creates a leaf node

•The Huffman coding algorithm will take a set of such nodes, one per letter, and insert them into
a priority queue

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 39

Data Structures for Huffman Coding
•The priority queue will put the node with lowest frequency at the front of the list

•In other words, a letter’s frequency will serve as its “priority”, with high-frequency letters having
the lowest priority

•If we want to create an interior node, which has one or two children, we have to “tell” the Node
object which nodes are its children, as in this example:
t0 = Node('W', 0.009)
t1 = Node('P', 0.030)
t2 = Node(t0, t1)

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 40

39

40

5/26/2020

21

Huffman Coding: The Algorithm
1. Make leaf nodes for every symbol in the alphabet
2. Put these nodes into a priority queue
3. Remove the first two nodes from the queue
4. Create a new interior node using these two nodes
5. Insert the new node back into the queue.

• If there are still two more nodes in the queue, go to step 3
• Otherwise, stop

•Let’s see how this would work if we consider only the vowels (to make the example simpler)

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 41

Huffman Coding: Example #1
•Below is the priority queue that would be created, with the front of the queue on the left:
•We see that U and E are the two front nodes

•So, we remove them from the queue, create a new interior node, and insert the new node into
the queue, as we’ll see on the next slide

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 42

41

42

5/26/2020

22

Huffman Coding: Example #1

•Above the horizontal line is the content of the priority queue
•Note how the queue has one fewer entry in it now
•Next we’ll remove the nodes for I and O, create a new node with these two nodes as children
and add the new node back into the queue

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 43

Huffman Coding: Example #1

•Next we’ll remove the nodes with the weights 0.225 and 0.326, and combine them into a new
interior node

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 44

43

44

5/26/2020

23

Huffman Coding: Example #1

•Finally, we have only two nodes left, so we remove them both, and combine them into a new
interior node

•This last node we create becomes the root of the binary tree

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 45

Huffman Coding: Example #1

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 46

45

46

5/26/2020

24

Huffman Coding: Example #1
•With the tree completed, we now attach 0’s and 1’s to the edges connected to the left child and
right child of each node, respectively

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 47

Huffman Coding: Example #1
•Starting at the root, we trace the path from the root to each node to generate the codes for
each letter:

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 48

47

48

5/26/2020

25

The build_tree() Function
•We can now implement a function build_tree() that will build a Huffman tree from the list of
frequencies

•The function read_frequencies() from the BitLab module will load the frequencies stored
from a file into a dictionary

•The build_tree() function then adds the frequencies into Node objects, which are in turn
added into the priority queue

•Finally, a while-loop assembles the Huffman tree by removing items two at a time from the
priority queue and re-inserts the resulting “merged” pairs back into the queue

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 49

The build_tree() Function
from PythonLabs.BitLab import Node, read_frequencies, init_queue
def build_tree(filename):

pq = init_queue(read_frequencies(filename))
while len(pq) > 1:

n1 = pq.pop() # remove 1st element
n2 = pq.pop() # remove 2nd element
pq.insert(Node(n1,n2))

return pq[0]

See huffman.py

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 50

49

50

5/26/2020

26

Huffman Coding: Example #1
•Let’s try the function with the vowel frequencies:

vt = build_tree('hvfreq.txt')
print(vt)
hvfreq.txt is in PythonLabs/data/huffman/

•Output:
(1.000 (A: 0.449) (0.551 (0.225
(U: 0.101) (E: 0.124)) (0.326 (I: 0.144)
(O: 0.182))))

•Although it may not seem like it, this is actually our tree
•Let’s reformat it a little (see next slide)

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 51

Huffman Coding: Example #1

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 52

51

52

5/26/2020

27

Huffman Coding: Example #1
•Finally, the recursive function assign_codes() from BitLab assembled the Huffman codes from
the Huffman tree:
from PythonLabs.BitLab import assign_codes
codes = assign_codes(vt)
print(codes)

•Output:
{'A': 0, 'E': 101, 'I': 110, 'O': 111, 'U': 100}

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 53

Huffman Coding: Example #2
•The file hafreq.txt contains the frequencies for all letters in the Hawaiian alphabet
•Let’s build the Huffman tree from the frequencies:

at = build_tree('hafreq.txt')

•Then assign the codes:
codes = assign_codes(at)

•Result: {
"'": 0111, 'A': 10, 'E': 1101,
'H': 0001, 'I': 1111, 'K': 001,
'L': 0000, 'M': 11000, 'N': 1110,
'O': 010, 'P': 110011, 'U': 0110,
'W': 110010 }

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 54

53

54

5/26/2020

28

Huffman Coding: Example #2

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 55

Huffman Coding: Example #2
•What we find is that the most-frequently appearing letters have short codes, while the less-
frequently appearing letters have longer code

•Also of note: no code is the prefix of another code

•For example, the code for A is 10. No other code begins with 10.
• This fact is important when we want to decode a message
• Let’s see now how we decode a message (next slide)

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 56

55

56

5/26/2020

29

Huffman Coding: Example #2
•Suppose we have the message 110001001101111
•We scan the digits from left to right
•The first five digits, 11000, form the code for “M”
•The next two digits, 10, form the code for “A”
•The next four digits, 0110, form the code for “U”
•Finally, the last four digits, 1111, form the code for “I”
•So, the original encoded word was “MAUI”
•There is no other way to decode that string of bits to generate a different word

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 57

Huffman Coding: Example #3
•Given the following letter frequencies, let’s compute the Huffman
coding for the letters

•We begin by inserting the letters into a priority queue:

•Now merge the 2irst two elements in the queue until the tree is
assembled (see few next slides)

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 58

57

58

5/26/2020

30

Huffman Coding: Example #3

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 59

Huffman Coding: Example #3

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 60

59

60

5/26/2020

31

Huffman Coding: Example #3

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 61

Huffman Coding: Example #3

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 62

61

62

5/26/2020

32

Huffman Coding: Example #3

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 63

Huffman Coding: Example #3

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 64

63

64

5/26/2020

33

encode()/decode()
•With the dictionary for a Huffman coding assembled, it becomes very easy to encode strings:

huffman_codes = {
"'": '0111', 'A': '10', 'E': '1101’,
'H': '0001', 'I': '1111', 'K': '001’,
'L': '0000', 'M': '11000', 'N': '1110’,
'O': '010', 'P': '110011', 'U': '0110’,
'W': '110010’}

def encode(word, encodings):
result = ‘’
for letter in word:

result += encodings[letter]
return result

encode(‘MAUI’, huffman_codes) # sample call

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 65

encode()/decode()
•Decoding strings is a little trickier because the dictionary’s key/value pairs are reversed from
what we need
• The dictionary maps letters to codes, which is suitable for encoding
• For decoding we need to map codes to letters

•Similar to list comprehensions, a dictionary comprehension lets you create a new dictionary
from an existing one

•Here’s the code we need. It maps a value from the huffman_codes dictionary back to its key:

reversed_codes = { huffman_codes[key]: key
for key in huffman_codes.keys()}

•Would this work if values are not unique in huffman_codes?

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 66

65

66

5/26/2020

34

encode()/decode()
•We can now write the decode() function, where a “reversed” dictionary is given as decodings :

def decode(encoded, decodings):
result = ‘’
while len(encoded) > 0:

for i in range(1, len(encoded) + 1):
if encoded[:i] in decodings.keys():

result += decodings[encoded[:i]]
encoded = encoded[i:]
break

return result

decode(‘110001001101111’, reversed_codes) # sample call

•See huffman.py for this code and examples

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 67

Questions?

(C) PRAVIN PAWAR, ALEX KUHN, ARTHUR LEE, TONY MIONE- SUNY KOREA - CSE 101 68

67

68

