Introduction to Computational and Algorithmic Thinking Introduction to
Computational and
Algorithmic Thinking
CHAPTER 8 – DATA REPRESENTATION AND COMPRESSION

Announcements

This lecture: Data Representation and Compression

Reading: Read Chapter 8 of Conery

Acknowledgement: Some of this lecture slides are based on CSE 101 lecture notes by Prof. Kevin McDonald at SBU examples and Compression
Version Control Compression
This lecture slides are based on CSE 101 lecture notes by Prof. Kevin
Notes in the summary and alternative summary convenience comes and the summary control of the summa

Data and Computers •Computers are multimedia devices, dealing with a vast array of information categories • Information is data (basic values, facts) that has been organized or processed into useful form •Computers store, present and help us modify various kinds of data: numbers, text, audio, images and graphics, video •Information can be represented in one of two ways: analog or digital •Analog data: a continuous representation, analogous to the actual information it represents •Digital data: a discrete representation that breaks the information up into separate elements manupole of the average of the average of the set of the

3

Binary Numbers •Modern digital computers use binary digits (base-2 numbers: 0 and 1) • The word bit is short for binary digit •The hardware determines how bits are stored • Hard drive: magnetized spots on surface of disk • Flash drive: presence/absence of electrons in a memory cell • Optical disc (CD/DVD): pits and lands (flat spots) •As computational thinkers, we do not need to worry so much about how the bits are stored •Instead, we will concern ourselves about what bits are stored (C) PRAVID: and the second

(C) PRAVIN Bis are stored

(C) Distance of disk

and lands (fits spots)

and and stapped

and and stapped

and that spots about what bits are stored

discussed about what bits are stored

discus

7

Binary Numbers

With binary we have just two digits, 0 and 1, and the place-values are powers of 2:

 $..., 2^3, 2^2, 2^1, 2^0, 2^{-1}, 2^{-2}, 2^{-3}, ...$, …

..., 8s, 4s, 2s, 1s, 1/2s, 1/4s, 1/8s, …

The number $1011.011₂$ written in decimal is:

 $(1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (1 \times 2^0) + (0 \times 2^1) + (1 \times 2^2) + (1 \times 2^3)$

 $= 8 + 0 + 2 + 1 + 0 + 1/4 + 1/8 = 11.375_{10}$

Important observation: 1011.011₂ and 11.375₁₀ are two different representations of the same quantity ORTS

(digits, 0 and 1, and the place-values are powers of 2:

(Ss, ...

an in decimal is:
 1×2^0 + (0 $\times 2^{-1}$ + (1 $\times 2^{-1}$) + (1 $\times 2^{-3}$)

= 11.375₁₀

0.011₄ and 11.375₁₀ are two different representations

All data in a modern machine is stored using binary numbers

Hexadecimal Numbers

•In some software development it's more natural to write numbers in base 16, called hexadecimal

•With hexadecimal we have 16 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and the letters A through F for ten through fifteen **Hexadecimal Numbers**
 • In some software development it's more natural to write numbers in base 16, called
 hexadecimal

•Which hexadecimal we have 16 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and the letters A through F $\frac{1}{2}$ Cimal Numbers

re development it's more natural to write numbers in base 16, called

read we have 16 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and the letters A through F for ten

hexadecimal are powers of 16:

169, 5/26/:

and Numbers

ment it's more natural to write numbers in base 16, called

16 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and the letters A through F for ten

al are powers of 16:
 $\frac{3}{2}$, 5, 0, 3,...
 $\frac{1}{2} + (14 \times 1$ **Hexademial** Mumbers
 Community the some software development it's more natural to write numbers in base 16, called

hexadecimal
 Community hexadecimal we have 16 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and the letters **Cimal Numbers**

development it's more natural to write numbers in base 16, called

al we have 16 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and the letters A through F for ten

exadecimal are powers of 16:
 6^9 , 16⁻¹, 16 5/26/20
 \blacksquare
 \blacks \pm 0Xa decimal Numbers

•In some software development it's more natural to write numbers in base 16, called

the
statecimal

*With hexadecimal we have 16 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and the letters A through F

•Place-values in hexadecimal are powers of 16:

 $..., 16^3, 16^2, 16^1, 16^0, 16^{-1}, 16^{-2}, 16^{-3}, ...$, …

 \cdot 51E₁₆ = (5 × 16²) + (1 × 16¹) + (14 × 16⁰) = 1,310₁₀

• FAD₁₆ = (15×16^2) + (10×16^1) + (13×16^0) = 4,013₁₀

•Changing the base of a number doesn't change the magnitude (value) of a number

Binary ↔ Hexadecimal

•To convert a hexadecimal number to a binary number, simply convert each digit in the hexadecimal number into a four-digit binary number. $\begin{array}{l} \textsf{exadecimal number to a binary number, simply convert each} \\\\ \textsf{the hexadecimal number to a binary number, simply convert each} \\\\ \textsf{in} \\\\ \textsf{in} \end{array} \end{array}$
 $\begin{array}{l} \textsf{in} \end{array} \begin{array}{l} \textsf{in} \end{array} \begin{$

•For example:

$D2B5_{16} = 1101001010110101_2$

•To convert a binary number to a hexadecimal, convert every four binary digits from right to left in the binary number into a hexadecimal digit.

•For example: $010001111110_2 = 47E_{16}$

Error Detection

•Errors in values can be caused by circumstances beyond our control

- The storage medium itself has a flaw or is deteriorating
- Data can be corrupted by interference during transfer over wires or wirelessly
- Even solar activity itself can affect electronic devices and disrupt electronic communication (C) PRAYIN PAYIN PAYING THE SURFACE OF A STANDARY ON THE STANDARY OF STANDARY AND STANDARY STATE STANDARY AND STANDARY AND A DESCRIPTION CONTINUES AND CONTINUES ARRANGEMENT OF THE SURFACE CONTINUES AND CONTINUES AND CONTIN
- •The general method for detecting errors is to add extra information to the data
	- Add extra data to a document before storing it in a file
	- Append error checking data to a message while sending it

Computing Parity Bits

•It is uncommon in programming to use XOR in Boolean expressions (True/False expressions)

•Rather, XOR is used (almost) exclusively in bitwise operations, which are expressions that involve 0s and 1s

•In Python, bitwise-and is denoted by the ampersand, &, and bitwise or is denoted by the vertical bar, or pipe, |

Text Compression

•Data compression algorithms reduce in the amount of space needed to store a piece of data •A data compression technique can be:

- Lossless (no information lost)
- Lossy (information lost)

•There are many algorithms for compressing files (including photos, images and other types of data) but we'll focus on a lossless technique for text compression called **Huffman coding** \n CSS $\overline{100}$
 $\overline{1}$ reduce in the amount of space needed to store a piece of data
 $\overline{1}$ exerciting files (including photos, images and other types of

sies stechnique for text compression called Huffman codi

•We will first need to explore a few data structures before we can understand how Huffman coding works

31

Binary Trees (next) •In mathematics and computer science, a tree consists of data values stored at nodes, which are connected to each other in a hierarchical manner by edges •Like a family tree, a tree shows parent-child relationships •• Similarly Trees (next)
•• The mathematics and computer science, a tree consists of data values stored at nodes, which are connected to each other in a herarchical manner by edges
•• The discussion of the interior node i Binary Trees (next)

In mathematics and computer science, a tree consists of data values stored at nodes, which are

connected to each other in a hierarchical manner by edges

Each node in the tree, are shows parent-child (nc)
 $\left(\text{CAL})\right)$
 $\left(\text{CAL})\right)$
 $\left(\text{CAL})\right)$ are consists of data values stored at **nodes**, which are
 $\left(\text{CAL})\right)$ are consisted relationships
 $\left(\text{CAL})\right)$ are considered by beneath them in the tree
 $\left(\text{CAL})\right$

- •Each node in the tree, except for a special node called the root, has exactly one parent node
- •Nodes can be connected to 0 or more child nodes immediately beneath them in the tree
- slide)
- •Towards the bottom of a tree we find nodes with no children; such nodes are called leaves

Huffman Coding •Huffman coding is a scheme for encoding letters based on the idea of using shorter codes for more commonly used letters • ASCII uses 7 or 8 bits to store every letter, regardless of how often that letter is used in real text • Imagine if we could find a way to store commonly used letters like R, S, T, N, L, E, etc. using fewer bits •For large data-sets consisting only of characters, the potential savings is huge • This is what Huffman coding accomplishes (The encoding letters based on the idea of using shorter codes for

every letter, regardless of how often that letter is used in real text

y to store commonly used letters like R, S, T, N, L, E, etc. using fewer bits

com

Data Structures for Huffman Coding

- •In an earlier lecture we learned about a special kind of list called a priority queue
- •Every item inserted into a priority queue has a corresponding numerical priority
- •The priority queue always makes sure that the item with highest priority is at the front of the list
-
-
- •The pop() method removes the item at the front of the list, which is guaranteed to be the item of highest priority Text of Comparison of this called a *priority queue*

ed about a special kind of list called a *priority queue*

akes sure that the item with highest priority is at the front of the list

the spanulab implements the priori

Huffman Coding: Example #2 $\nexists \text{ in } \mathbb{R}^2$

(e 1100010011011111

oright

the code for "N"

the code for "N"

the code for "V"

mm the code for "U"

11, form the code for "U"

dwas "MAUI"

dwas "MAUI"

de that string of bits to generate a differen

•Suppose we have the message 110001001101111

- •We scan the digits from left to right
- •The first five digits, 11000, form the code for "M"
- •The next two digits, 10, form the code for "A"
- •The next four digits, 0110, form the code for "U"
- •Finally, the last four digits, 1111, form the code for "I"
- •So, the original encoded word was "MAUI"
- •There is no other way to decode that string of bits to generate a different word

encode()/decode()

•With the dictionary for a Huffman coding assembled, it becomes very easy to encode strings:

 $\text{P1COde}(\text{)}/\text{decode}(\text{)}$
with the dictionary for a Huffman coding assembled, it becomes very easy to encode strings:
huffman_codes = {
"":'.'0111', 'A:':10', 'E':'1101',
"H':'0001', 'T:'1111', 'K:':001',
"D':000', 'M':' "'": '0111', 'A': '10', 'E': '1101', 'H': '0001', 'I': '1111', 'K': '001', 'L': '0000', 'M': '11000', 'N': '1110', 'O': '010', 'P': '110011', 'U': '0110', 'W': '110010'} def encode(word, encodings): $result =$ for letter in word: result += encodings[letter] return result $\text{P1COde}(\text{)/decodet}(\text{)}$
 $\text{P1COde}(\text{)/decodetedet}(\text{)}$

With the dictionary for a Huffman coding assembled, it becomes very easy to encode strings:

" $\text{P1}^{\text{111111}}$, " $\text{P2}^{\text{1111011}}$," $\text{P2}^{\text{111111}}$," $\text{P3}^{\text{1$ $\text{COC} \cdot \text{C} \cdot \text$

