
INTRODUCING CSS

The contents and slides of this topic are based on:
• Jennifer Robbins, Learning Web Design, O'Reilly, 5th edition, May 2018, ISBN 978-1-491-96020-2.

• Paul S. Wang, Dynamic Web programming and HTML5, Routledge, 1 edition, 2012, ISBN 1439871825.

CSS Defined:

 Short for "Cascading Style Sheets".

 Determines how the elements in our XHTML documents are
displayed and formatted.

 Designed to separate the content of a web page from the
presentation of that content.

 Enables us to make all pages of our website look similar and
consistent (font, color, etc.).

 Allows us to make site-wide formatting changes from a single
location (rather than having to edit each page individually).

2

Style Separate from Structure

 These pages have the exact same HTML source but different
style sheets:

(csszengarden.com)

How Style Sheets Work

1. Start with a marked up document (like HTML, but
could be another XML markup language).

2. Write styles for how you want elements to look using
CSS syntax.

3. Attach the styles to the document (there are a number
of ways).

4. The browser uses your instructions when rendering the
elements.

Three Ways to Use CSS:

1) Inline Style - CSS is placed directly into the HTML element.

2) Internal Style Sheet - CSS is placed into a separate area within
the <head> section of a web page.

3) External Style Sheet - CSS is placed into a separate computer
file and "connected" to a web page.

CSS Format Conflicts:

 It's possible for CSS formatting to be defined in all three
locations at the same time.

 For example, a paragraph element could contain an inline
style (color:red) but the internal style sheet (color:blue) and the
external style sheet (color:green) give conflicting instructions
to the web browser.

 Web browsers need a consistent way of "settling" this
disagreement.

 Within this cascade of style declarations, the closest rule wins.

 An inline style overrules an internal style, which overrules an
external style.

What is Meant by "Cascading"?

 We use the term cascading because there is an
established order of priority to resolve these formatting
conflicts:

1) Inline style (highest priority)

2) Internal style sheet (second priority)

3) External style sheet (third priority)

4) Web browser default (only if not defined elsewhere)

Example: Inline Style

PREVIEW:

<h2 style="font-family:georgia; color:red;">

CAUTION: Stormy Weather!

</h2>

A semicolon must follow each style declaration.

Example: Internal Style Sheet

<head>

<style type="text/css">

h2 {font-family:georgia; color:red;}

</style>

</head>

• For internal style sheets, all formatting declarations are placed inside the
<style> element within the <head> section of the document.

• An element is listed and all the styling information follows, surrounded by
opening and closing curly brackets, { }.

• A semicolon must still follow each style declaration.

Example: External Style Sheet
<head>

<link rel="stylesheet" type="text/css" href="style.css" />

</head>

h2 {font-family:georgia; color:red;}

style.css (separate file):

• For external style sheets, a <link> tag is placed at the beginning of the
<head> section of the document specifying the external style sheet
(with a .css extension) to be used for formatting.

• The external style sheet uses the same syntax as the internal style
sheet when listing elements and their styling.

• Styles declared in an external style sheet will affect all matching
elements on all web pages that link to the stylesheet.

• In this example, all <h2> elements on all pages using this style sheet
will be displayed in Georgia font and in red color.

Internal vs. External Style Sheets

 Internal style sheets are appropriate for very small sites,
especially those that have just one page.

 Internal style sheets might also make sense when each
page of a site needs to have a completely different look.

 External style sheets are better for multi-page websites
that need to have a uniform look and feel to all pages.

 External style sheets not only make for faster-loading
sites (less redundant code) but also allow designers to
make site-wide changes quickly and easily.

CSS Terminology and Syntax:

p {color:red;}

Correct syntax:

selector {property:value;}

Selector Property Value

Some Examples

Background Picture

body {
background-image:url('picture.gif');
background-repeat:repeat-x;
background-color:red;
}

Paragraph Properties
p {
color:red;
font-style:italic;
text-align:center;

}

Style Rules

Each rule selects an element and declares how it
should display.

h1 { color: green; }

This rule selects all h1 elements and declares that
they should be green.

strong { color: red; font-style: italic; }

This rule selects all strong inline elements and
declares that they should be red and in an italic
font.

Style Rule Structure

• A style rule is made up of a selector a declaration.

• The declaration is one or more property / value pairs.

Selectors

There are many types of selectors. Here are just two
examples:

p {property: value;}

Element type selector: Selects all elements of this type (p) in
the document.

#intro {property: value}

ID selector (indicated by the # symbol) selects by ID value. In
the example, an element with an id of “intro” would be
selected.

Declarations

The declaration is made up of a property/value pair contained
in curly brackets { }:

selector { property: value; }

Example

h2 { color: red;
font-size: 2em;
margin-left: 30px;
opacity: .5;

}

Declarations (cont’d)

 End each declaration with a semicolon to keep it separate from
the next declaration.

 White space is ignored, so you can stack declarations to make
them easier to read.

 Properties are defined in the CSS specifications.

 Values are dependent on the type of property:

 Measurements

 Keywords

 Color values

 More

CSS Comments

/* comment goes here */

 Content between /* and */ will be ignored by the browser.

 Useful for leaving notes or section labels in the style sheet.

 Can be used within rules to temporarily hide style
declarations in the design process.

Adding Styles to the
Document

There are three ways to attach a style sheet to a document:

External style sheets
A separate, text-only .css file associated with the document with the
link element or @import rule

Embedded style sheets
Styles are listed in the head of the HTML document in the style
element.

Inline styles
Properties and values are added to an individual element with the
style attribute.

External Style Sheets

The style rules are saved in a separate text-only .css file and
attached via link or @import.

Via link element in HTML:
<head>

<title>Titles are require</title>
<link rel="stylesheet" href="/path/example.css">

</head>

Via @import rule in a style sheet:
<head>

<title>Titles are required</title>
<style>

@import url("/path/example.css");
p {font-face: Verdana;}

</style>
</head>

Embedded Style Sheets

Embedded style sheets are placed in the head of the
document via the style element:

<head>
<title>Titles are required</title>
<style>

/* style rules go here */
</style>

</head>

Inline Styles

Apply a style declaration to a single element with the style
attribute:

<p style="font-size: large;">Paragraph text...</p>

To add multiple properties, separate them with semicolons:

<h3 style="color: red; margin-top: 30px;">Intro</h3>

Document Structure

Documents have an implicit structure.

We give certain relationships names, as if they’re a family:

• All the elements contained in a given element are its
descendents.

• An element that is directly contained within another
element is the child of that element.

• The containing element is the parent of the contained
element.

• Two elements with the same parent are siblings.

Inheritance

 Many properties applied to elements are passed down to the
elements they contain. This is called inheritance.

 For example, applying a sans-serif font to a p element
causes the em element it contains to be sans-serif as well:

Inheritance (cont’d)

 Some properties inherit; others do not.
Properties related to text usually inherit; properties related
to layout generally don’t.

 Styles explicitly applied to specific elements override
inherited styles.

 You’ll learn to use inheritance strategically to keep your
style rules simple.

The Cascade

 The cascade refers to the system for resolving conflicts
when several styles apply to the same element.

 Style information is passed down (it “cascades” down) until
overwritten by a style rule with more weight.

 Weight is considered based on:

Priority of style rule source

Specificity of the selector

Rule order

 We use the term cascading because there is an
established order of priority to resolve these formatting
conflicts:

1) Inline style (highest priority)

2) Internal style sheet (second priority)

3) External style sheet (third priority)

4) Web browser default (only if not defined elsewhere)

The Cascade: Priority

The Cascade: Specificity

 When two rules in a single style sheet conflict, the type of
selector is used to determine which rule has more
weight.

 For example, ID selectors are more specific than general
element selectors.

NOTE: Specificity will be discussed once we have covered more
selector types.

The Cascade: Rule Order

 When two rules have equal weight, rule order is used.
Whichever rule appears last “wins.”

<style>
p {color: red;}
p {color: blue;}
p {color: green;}

</style>

In this example, paragraphs would be green.

 Styles may come in from external style sheets, embedded
style rules, and inline styles. The style rule that gets
parsed last (the one closest to the content) will apply.

The Box Model

Browsers see every element on the page as being contained in
a little rectangular box. Block elements and inline elements
participate in the box model.

In this example, a blue border is added to all elements.

The Box Model (cont’d)

 The box model is the foundation of CSS page layout.

 Apply properties such as borders, margins, padding,
and backgrounds to element boxes.

 Position, move, grow, and shrink boxes to create fixed
or flexible page layouts.

CSS Units of Measurement

CSS provides a variety ways to specify measurements:

Absolute units
Have predefined meanings or real-world equivalents

Relative units
Based on the size of something else, such as the default text
size or the size of the parent element

Percentages
Calculated relative to another value, such as the size of the
parent element

Absolute Units

With the exception of pixels, absolute units are not
appropriate for web design:

px pixel

in inches

mm millimeters

cm centimeters

q 1/4 millimeter

pt points (1/72 inch)

pc pica (1 pica = 12 points = 1/6 inch)

Relative Units

Relative units are based on the size of something else:

em a unit equal to the current font size

ex x-height, equal to the height of a lowercase x

rem root em, equal to the font size of the html element

ch zero width, equal to the width of a zero (0)

vw viewport width unit (equal to 1/100 of viewport width)

vh viewport height unit (1/100 of viewport height)

vmin viewport minimum unit (value of vh or vw, whichever is
smaller)

vmax viewport maximum unit (value of vh or vw, whichever is
larger)

RELATIVE UNITS

The rem Unit

 The rem (root em) unit is based on the font size of the
html element, whatever that happens to be.

 Default in modern browsers: Root font size is 16 pixels, so a
rem = a 16-pixel unit.

 If the root font size of the document changes, so does the
size of a rem (and that’s good for keeping elements
proportional).

RELATIVE UNITS

The em Unit

 The em unit is traditionally based on the width of a capital
letter M in the font.

 When the font size is 16 pixels,1em = 16 pixels, 2em = 32
pixels, and so on.

NOTE: Because they’re based on the font size of the current element,
the size of an em may not be consistent across a page.

RELATIVE UNITS

Viewport Percentage Lengths
(vw/vh)
Viewport width (vw) and viewport height (vh) units are relative
to the size of the viewport (browser window):

vh = 1/100th width of viewport

vh = 1/100th height of viewport

They’re useful for making an element fill the viewport or a
specified percentage of it. This image will be 50% the width
and height of the viewport:

img { width: 50vw; height: 50vh; }

Browser Developer Tools

Chrome DevTools (View > Developer > Developer Tools)

Firefox, Safari, Opera, and Microsoft Edge also have developer tools.

 Font-related properties

 Text line settings

 Various text effects

 List style properties

 ID, class, and descendent selectors

 Specificity

Formatting Text

Designing Text

Styling text on the web is tricky because you don’t have
control over how the text displays for the user:

 They may not have the font you specify.

 They may have their text set larger or smaller than you
designed it.

Best practices allow for flexibility in text specification.

Typesetting Terminology

 A typeface is a set of characters with a single design
(example: Garamond).

 A font is a particular variation of the typeface with a specific
weight, slant, or ornamentation (example: Garamond Bold
Italic).

 In traditional metal type, each size was a separate font
(example: 12-point Garamond Bold Italic).

 On a computer, fonts are generally stored in individual font
files.

CSS Basic Font Properties

CSS font properties deal with specifying the shapes of the
characters themselves:

 font-family

 font-size

 font-weight

 font-style

 font-variant

 font (a shorthand that includes settings for all of the
above)

Specifying the Font Family

font-family

Values: One or more font family names, separated by commas

Example:

body { font-family: Arial; }

var { font-family: Courier, monospace; }

Specifying the Font Family (cont’d)

 Font names must be capitalized (except generic font
families).

 Use commas to separate multiple font names.

 If the name has a character space, it must appear within
quotation marks:

p { font-family: "Duru Sans", Verdana, sans-serif; }

Using Fonts on the Web

 The font must be available on the user’s machine for it to
display.

 The best practice is to provide a list of options. The browser
uses the first one that is available.

 Start with the font you want and then provide backup options
ending with a generic font family, as shown here:
p { font-family: "Duru Sans", Verdana, sans-serif; }

 You can also download a web font with the page, but it adds to
the download and display time.

Generic Font Families

 Generic font families instruct the browser to use an
available font from one of five stylistic categories:
serif, sans-serif, monospace, cursive, fantasy

 Generic font families are often used as the last backup
option.

Generic Font Families (cont’d)

Specifying Font Size

font-size

Values:

 CSS length units

 Percentage value

 Absolute keywords (xx-small, x-small, small, medium,
large, x-large, xx-large)

 Relative keywords (larger, smaller)

Example:

h1 { font-size: 2.5rem; }

Specifying Font Size (cont’d)

Most common sizing methods:

 rem and em units

 percentages (based on the inherited font size for that
element)

 pixels (px) can be used, but they’re not flexible.

Font Size: rem Units

 The rem (root em) is equal to the font size of the html
(root) element.

 In browsers, the default root size is 16 pixels, so:
1 rem = 16 pixels.

 If the font size of the root is changed, rem measurements
change too.

 !!! Old browsers do not support rem units (IE8 and earlier).

Font Size: em Units

 The em unit is based on the current font size of the
element.

 The default font size is 16 pixels. By default, 1em = 16
pixels.

 But if you change the font size of the element, the size of
its em unit changes too.

 Ems may be different sizes in different parts of the
document and may compound larger or smaller when
elements are nested.

 This makes ems a little tricky to use, although they are
better supported than rem units.

Font Weight (Boldness)

font-weight

Values: normal, bold, bolder, lighter, 100, 200, 300,
400, 500, 600, 700, 800, 900

Example:

h1 { font-weight: normal; }

span.new { font-weight: bold; }

 Most common values are normal and bold.

 Numerical values are useful when using a font with multiple
weights.

Font Style (Italics)

font-style

Values: normal, italic, oblique

Example:

cite { font-style: italic; }

 Makes text italic, normal, or oblique (slanted, but generally
the same as italics).

Small Caps

font-variant

Values (in CSS2.1): normal, small-caps

Example:

abbr { font-variant: small-caps; }

 Small caps are a separate font design that uses small
uppercase characters in place of lowercase letters.

 They help acronyms and other strings of capital letters blend
in with the weight of the surrounding text.

Condensed and Extended Text

Values (in CSS2.1): normal, ultra-condensed,
extra-condensed, condensed, semi-
condensed, semi-expanded, expanded,
extra-expanded, ultra-expanded

Example:

abbr { font-variant: small-caps; }

 Tells the browser to select a normal,
condensed, or extended font variation from a
typeface if it is available

font-stretch

The Shortcut font Property

font

Values (in CSS2.1): A list of values for all the individual properties, in
this order:

{font: style weight stretch variant size/line-height font-family}

At minimum, it must contain font-size and font-family, in that
order. Other values are optional and may appear in any order prior to
font-size.

Example:

p { font: 1em sans-serif; }

h3 { font: oblique bold small-caps 1.5em Verdana, sans-serif;
}

Advanced Typography

The CSS3 Font Module offers properties for fine-tuned
typography control, including:

 Ligatures

 Superscript and subscript

 Alternate characters (such as a swash design for an S)

 Proportional font sizing using x-height

 Kerning

 OpenType font features

Text Line Treatments

Some properties control whole lines of text:

 Line height (line-height)

 Indents (text-indent)

 Horizontal alignment (text-align)

Line Height

line-height

Values: Number, length, percentage, normal

Example:

p { line-height: 1.4em; }

 Line height defines the minimum distance from baseline to
baseline in text.

Line Height (cont’d.)

 The baseline is the imaginary line upon which the bottoms of
characters sit.

 If a large character or image is on a line, the line height
expands to accommodate it.

Indents

text-indent

Values: Length, percentage

Examples:
p {text-ident: 2em;}

p {text-ident: 25%;}

p {text-ident: -35px;}

Horizontal Text Alignment

text-align

Values: left, right, center, justify, start, end

Examples:

Underlines (Text Decoration)

text-decoration

Values: none, underline, overline, line-through, blink

Examples:
NOTE:
text-decoration is
often used to turn off
underlines under links:

a {
text-decoration: none;

}

Text Decoration Tips

 If you turn off underlines under links, be sure there is
another visual cue to compensate.

 Underlining text that is not a link may be misleading.
Consider italics instead.

 Don’t use blink. Browsers don’t support it anyway.

Capitalization

text-transform

Values:
none, capitalize, lowercase, uppercase, full-width

Examples:

Spacing

letter-spacing

Values: length, normal

word-spacing

Values: length, normal

Examples:

Text Shadow

text-shadow

Values: 'horizontal-offset' 'vertical-offset' 'blur-radius' 'color',
none

The value is two offset measurements, an optional blur radius,
and a color value (with no commas between).

Example:

List Style Properties

There are three properties for affecting the display
of lists:

 list-style-type
Chooses the type of list marker

 list-style-position
Sets the position of the marker relative to
the list element box

 list-style-image
Allows you to specify your own image for use
as a bullet

LIST STYLES

Choosing a Marker
list-style-type

Values:
none, disc, circle, square, decimal, decimal-leading-zero, lower-
alpha, upper-alpha, lower-latin, upper-latin, lower-roman, upper-
roman, lower-greek

Unordered lists: ul { list-style-type: keyword; }

Keyword System

decimal 1, 2, 3, 4, 5…

decimal-leading-zero 01, 02, 03, 04, 05…

lower-alpha a, b, c, d, e…

upper-alpha A, B, C, D, E…

lower-latin a, b, c, d, e… (same as lower-alpha)

upper-latin A, B, C, D, E… (same as upper-alpha)

lower-roman i, ii, iii, iv, v…

upper-roman I, II, III, IV, V…

lower-greek α, β, γ, δ, ε…

LIST STYLES
Choosing a Marker (cont’d)

Ordered lists: ol { list-style-type: keyword; }

LIST STYLES

Marker Position
list-style-position

Values: inside, outside, hanging

Positions the marker relative to the content area:

LIST STYLES

Custom Bullets
list-style-image

Values: url(location), none

Example:
ul {

list-style-type: disc;
list-style-image: url(/images/rainbow.gif);
list-style-position: outside;

}

More Selector Types

 Descendent selectors

 ID selectors

 Class selectors

 Universal selector

Descendent Selectors

A descendent selector targets elements contained in
another element.

It’s a kind of contextual selector (it selects based on
relationship to another element).

It’s indicated in a list separated by a character space.

ol a {font-weight: bold;}
(only the links (a) in ordered lists (ol) would be bold)

h1 em {color: red;}
(only emphasized text in h1s would be red)

Descendent Selectors (cont’d)

They can appear as part of a grouped selector:

h1 em, h2 em, h3 em {color: red;}

(only emphasized text in h1, h2, and h3 elements)

They can be several layers deep:

ol a em {font-variant: small-caps;}

(only emphasized text in links in ordered lists)

ID Selectors

ID selectors (indicated by a # symbol) target elements based on
the value of their ID attributes:

<li id="primary">Primary color t-shirt

To target just that item:

li#primary {color: olive;}

To omit the element name:

#primary {color: olive;}

It can be used as part of a compound or contextual selector:

#intro a { text-decoration: none;}

Class Selectors

Class selectors (indicated by a . symbol) select elements based
on the value of their class attributes:

p.special { color: orange;}

(All paragraphs with the class name "special" would be orange.)

To target all element types that share a class name, omit the
element name in the selector:

.hilight { background-color: yellow;}

(All elements with the class “hilight” would have a yellow
background.)

Universal Selector

The universal element selector (*) matches any element, like
a wildcard in programming languages:

* {border: 1px solid gray;}

(puts a 1-pixel gray border around every element in the document)

Can be used as part of contextual selectors:

#intro * {border: 1px solid gray;}

(selects all elements contained within an element with the ID intro)

Specificity Basics

Specificity refers to a system for sorting out which selectors
have more weight when resolving style rule conflicts.

More specific selectors have more weight.

In simplified terms, it works like this:

 Inline styles with the style attribute are more specific than
(and will override…)

 ID selectors, which are more specific than (and will override…)

 Class selectors, which are more specific than (and will
override…)

 Individual element selectors

Calculating Specificity

There is a system used to calculate specificity. Start by drawing three
boxes:

[] [] []

For each style rule:

1. Count the IDs in the selector and put that number in the first box.

2. Count the class and pseudo-class selectors and put the number in the
second box.

3. Count the element names and put the number in the third box

[ID] [class] [elements]

4. The first box that is not a tie determines which selector wins.

Calculating Specificity (cont’d)

Example:

h1 { color: red;} [0] [0] [1]

h1.special { color: lime; } [0] [1] [1]

The second one has a class selector and the first one doesn’t,
therefore the second one is more specific and has more
weight.

The lime color applies to h1s when they have the class name
“special.”

Using Specificity

Use specificity strategically to take advantage of overrides:

p { line-height: 1.2em; } [0] [0] [1]

(sets the line-height for all paragraphs)

blockquote p { line-height: 1em; } [0] [0] [2]

(more specific selector changes line-height when the paragraph
is in a blockquote)

p.intro { line-height: 2em; } [0] [1] [1]

(paragraphs with the class “intro” have a line-height of 2em,
even when they’re in a blockquote. A class name in the selector

has more weight than two element names.)

Exercises

Exercises

