
5/13/2020

1

JavaScript & Document Object
Model (DOM)

The contents and slides of this topic are used with
permission from:
• Jennifer Robbins, Learning Web Design, O'Reilly, 5th edition, May 2018, ISBN 978-1-491-96020-2.

• Paul S. Wang, Dynamic Web programming and HTML5, Routledge, 1 edition, 2012, ISBN 1439871825.

 What JavaScript is

 Variables and arrays

 if/else statements and loops

 Native and custom functions

 Browser objects

 Event handlers

JavaScript

1

2

5/13/2020

2

What Is JavaScript?

 JavaScript is a client-side scripting language—it is processed on the
user’s machine (not the server).

 It is reliant on the browser’s capabilities (it may even be unavailable
entirely).

 It is a dynamic programming language—it does not need to be
compiled into an executable program. The browser reads it just as we
do.

 It is loosely typed—you don’t need to define variable types as you do
for other programming languages.

JavaScript Tasks

 JavaScript adds a behavioral layer (interactivity) to a web
page. Some examples include:

 Checking form submissions and provide feedback messages
and UI changes

 Injecting content into current documents on the fly

 Showing and hiding content based on a user clicking a link or
heading

 Completing a term in a search box

 Testing for browser features and capabilities

 Much more!

3

4

5/13/2020

3

Adding Scripts to a Page

 Embedded script
Include the script in an HTML document with the script
element:

 <script>
 … JavaScript code goes here
 </script>

 External script
Use the src attribute in the script element to point to
an external, standalone .js file:

 <script src="my_script.js"></script>

Script Placement

 In the head of the document

 For when you want the script to
do something before the body
completely loads (ex:
Modernizr):

 <!DOCTYPE html>
 <html lang="en">
 <head>
 <meta charset="utf-8">
 <script

src="script.js"></script>
 </head>
 ...

 Just before the </body> tag

 Preferred when the browser
needs to parse the document
and its DOM structure before
running the script:

 ...
 <body>
 <!--contents of page-->
 <script

src="script.js"></script>
 </body>
 </html>

The script element can go anywhere in the document, but the
most common places are as follows:

5

6

5/13/2020

4

JavaScript Syntax Basics

 JavaScript is case-sensitive.

 Whitespace is ignored (unless it is enclosed in quotes in a text string).

 A script is made up of a series of statements, commands that tell the
browser what to do.

 Single-line comments in JavaScript appear after two // characters:

 // This is a single-line comment

 Multiple-line comments go between /* and */ characters.

Building Blocks of Scripts

Variables

Comparison operators

 if/else statements

Loops

Functions

Scope

7

8

5/13/2020

5

Variables

 A variable is made up of a name and a value.

 You create a variable so that you can refer to the value by name
later in the script.

 The value can be a number, text string, element in the DOM, or
function, to name a few examples.

 Variables are defined using the var keyword:

 var foo = 5;

 The variable is named foo. The equals sign (=) indicates we are
assigning it the numeric value of 5.

Variables (cont’d)

 Rules for naming a variable:

 It must start with a letter or underscore.

 It may not contain character spaces. Use underscores or CamelCase instead.

 It may not contain special characters (! . , / \ + * =).

 It should describe the information it contains.

9

10

5/13/2020

6

Value Data Types

 Values assigned to variables fall under a few data types:

 Undefined
The variable is declared by giving it a name, but no value:

 var foo;

 alert(foo); // Will open a dialog containing "undefined"

 null
Assigns the variable no inherent value:

 var foo = null;

 alert(foo); // Will open a dialog containing "null"

 Numbers
When you assign a number (e.g., 5), JavaScript treats it as a number
(you don’t need to tell it it's a number):

 var foo = 5;

 alert(foo + foo); // This will alert "10"

Value Data Types (cont’d)

 Strings
If the value is wrapped in single or double quotes, it is treated as a string
of text:

 var foo = "five";

 alert(foo); // Will alert "five"

 alert(foo + foo); // Will alert "fivefive"

 Booleans
Assigns a true or false value, used for scripting logic:

 var foo = true; // The variable "foo" is now true

 Arrays
A group of multiple values (called members) assigned to a single variable.
Values in arrays are indexed (assigned a number starting with 0). You can
refer to array values by their index numbers:

 var foo = [5, "five", "5"];

 alert(foo[0]); // Alerts "5"
 alert(foo[1]); // Alerts "five"
 alert(foo[2]); // Also alerts "5"

11

12

5/13/2020

7

Comparison Operators

 Comparison operators are special characters in JavaScript syntax
that evaluate and compare values:

 == Is equal to

 != Is not equal to

 === Is identical to (equal to and of the
same data type)

 !== Is not identical to

 > Is greater than

 >= Is greater than or equal to

 < Is less than

 <= Is less than or equal to

Comparison Operators (cont’d)

 Example
When we compare two values, JavaScript evaluates the
statement and gives back a Boolean (true/false) value:

 alert(5 == 5); // This will alert "true"

 alert(5 != 6); // This will alert "true"

 alert(5 < 1); // This will alert "false"

 NOTE: Equal to (==) is not the same as identical to (===).
Identical values must share a data type:

 alert("5" == 5); // This will alert "true". They're both
"5".

 alert("5" === 5); // This will alert "false". They're both
"5", but they're not the same data type.

 alert("5" !== 5); // This will alert "true", since they're
not the same data type.

13

14

5/13/2020

8

Mathematical Operators

 Mathematical operators perform mathematical functions on numeric values:

 + Add

 - Subtract

 * Multiply

 / Divide

 += Adds the value to itself

 ++ Increases the value of a number (or number in a variable) by 1

 -- Decreases the value of a number (or number in a variable) by 1

if/else Statements

 An if/else statement tests for conditions by asking a true/false
question.

 If the condition in parentheses is met, then execute the commands
between the curly brackets ({}):

if(true) {
// Do something.

}

 Example:
 if(1 != 2) {
 alert("These values are not equal.");
 // It is true that 1 is never equal to 2, so we should

see this alert.
 }

15

16

5/13/2020

9

if/else Statements (cont’d)

 If you want to do one thing if the test is true and something else if it is
false, include an else statement after the if statement:

 var test = "testing";
 if(test == "testing") {
 alert("You haven't changed anything.");
 } else {
 alert("You've changed something!");
 }

 Changing the value of the test variable to anything but
the word “testing” will trigger the alert “You've
changed something!”

Loops

 Loops allow you to do something to every variable in an
array without writing a statement for every one.

 One way to write a loop is with a for statement:

 for(initialize variable; test condition; alter
the value;) {

 // do something
 }

17

18

5/13/2020

10

Loops (cont’d)

 Example: This loop triggers 3 alerts, reading "0", "1", and “2":

for(var i = 0, i <= 2, i++) {
alert(i);

}

 for(): Says, "for every time this is true, do this.”

 var i = 0: Creates a new variable i with its value set to 0. "i"
(short for “index”) is a common variable name.

 i <= 2: Says, “as long as i is less than or equal to 2, keep looping.”

 i++: Shorthand for “every time this loop runs, add 1 to the value of
i.”

 {alert(i);}: This loop will run three times (once each for 0, 1,
and 2 values) and alert the i value.

Functions

 A function is a bit of code for performing a task that
doesn’t run until it is referenced or called.

 Parentheses sometimes contain arguments (additional
information used by the function):

19

20

5/13/2020

11

Functions (cont’d)

 Some functions are built into JavaScript. Here are examples of
native functions:

 alert(), confirm(), and prompt()
Functions that trigger browser-level dialog boxes

 Date()
Returns the current date and time

 You can also create your own custom functions by typing
function followed by a name for the function and the task it
performs:

 function name() {
 // Code for the new function goes
here.
 }

Variable Scope

 A variable that can only be used within one function is locally
scoped. When you define a variable inside a function, include
the var keyword to keep it locally scoped (recommended):

 var foo = "value";

 A variable that can be used by any script on your page is said to
be globally scoped.

 Any variable created outside of a function is automatically
globally scoped:

 var foo = "value";

 To make a variable created inside a function globally scoped,
omit the var keyword:

 foo = "value";

21

22

5/13/2020

12

The Browser Object
 JavaScript lets you manipulate parts of the browser window itself (the

window object).

 Examples of window properties and methods:

Property/Method Description
event Represents the state of an event

history Contains the URLs the user has visited within a browser
window

location Gives read/write access to the URI in the address bar

status Sets or returns the text in the status bar of the window

alert() Displays an alert box with a specified message and an
OK button

close() Closes the current window

confirm() Displays a dialog box with a specified message and an
OK and a Cancel button

focus() Sets focus on the current window

Event Handlers

 An event is an action that can be detected with JavaScript and
used to trigger scripts.

 Events are identified by event handlers. Examples:

 onload When the page loads

 onclick When the mouse clicks an object

 onmouseover When the pointer is moved over an element

 onerror When an error occurs when the document or a
resource loads

23

24

5/13/2020

13

Event Handlers (cont’d)

 Event handlers can be applied to items in pages in three ways:

 As an HTML attribute:

<body onclick="myFunction();">
/* myFunction runs when the user clicks anything
within 'body' */

 As a method attached to the element:

 window.onclick = myFunction;
 /* myFunction will run when the user
clicks anything within the browser window */

 Using addEventListener():

 window.addEventListener("click", myFunction);

 Notice that we omit the preceding “on” from the event

handler with this syntax.

Exercise

25

26

5/13/2020

14

 What the DOM is

 Accessing and changing elements, attributes, and contents

 Polyfills

 JavaScript libraries

Document Object Model (DOM)

Intro to the DOM

 The Document Object Model (DOM) is a programming interface that
provides a way to access and manipulate the contents of a document.

 It provides a structured map of the document and a set of methods for
interacting with them.

 It can be used with other XML languages and it can be accessed by
other programming languages (like PHP, Ruby, etc.).

27

28

5/13/2020

15

Node Tree

 The DOM treats the structure of a document like a tree with branches:

Node Tree (cont’d)

 Every element, attribute, and piece of content is a node on the tree
and can be accessed for scripting:

The nodes within
a p element

29

30

5/13/2020

16

Accessing Nodes

 To point to nodes, list them separated by periods (.).

 In this example, the variable foo is set to the HTML content of an
element with id="beginner":

 var foo = document.getElementById("beginner").innerHTML;

 The document object points to the page itself.

 getElementById specifies an element with the id “beginner”.

 innerHTML stands for the HTML content within that element.

Accessing Nodes (cont’d)

 Methods for accessing nodes in the document:

 getElementsByTagName()

 Accesses all elements with the given tag name
 Example: document.getElementsByTagName("p");

 getElementById()

 Accesses a single element by the value of its id attribute
 Example: document.getElementById("special");

 getElementsByClassName()

 Access elements by the value of a class attribute
 Example: document.getElementsByClassName("product");

31

32

5/13/2020

17

Accessing Nodes (cont’d.)

 querySelectorAll()

 Accesses nodes based on a CSS selector
 Example: document.querySelectorAll(".sidebar p");

 getAttribute()

 Accesses the value of a given attribute
 Example: getAttribute("src")

Manipulating Nodes

 There are several built-in methods for manipulating nodes:

 setAttribute()
 Sets the value of a given attribute:
 bigImage.setAttribute("src", "newimage.jpg");

 innerHTML
 Specifies the content inside an element (including markup if needed):
 introDiv.innerHTML = "<p>This is the intro text.</p>"

 style
 Applies a style using CSS properties:
 document.getElementById("intro").style.backgroundColor =

"#000;"

33

34

5/13/2020

18

Adding and Removing
Elements

 The DOM allows developers to change the document structure by
adding and removing nodes:

 createElement()

 createTextNode()

 appendChild()

 insertBefore()

 replaceChild()

 removeChild()

JavaScript Libraries

 A JavaScript library is a collection of prewritten functions and
methods that you can use in your scripts to accomplish common tasks
or simplify complex ones.

 Some are large frameworks for building complex applications.

 Some are targeted to specific tasks, such as forms or math.

 The most popular library is jQuery.

 Try searching “JavaScript library for __________” to see if there are
pre-made scripts you can use or adapt to your needs.

35

36

5/13/2020

19

Some resources
 Javascript tutorials:

 Tutorialspoint JavaScript tutorial: https://www.tutorialspoint.com/javascript/index.htm

 JavaScript form validation:

 https://www.w3resource.com/javascript/form/javascript-sample-registration-form-
validation.php

 https://www.geeksforgeeks.org/form-validation-using-html-javascript/

 http://javascript-coder.com/html-form/javascript-form-validation.phtml

 https://www.tutorialrepublic.com/javascript-tutorial/javascript-form-validation.php

 https://o7planning.org/en/12273/javascript-form-validation-tutorial

 JavaScript regular expressions:

 https://eloquentjavascript.net/09_regexp.html

 https://blog.bitsrc.io/a-beginners-guide-to-regular-expressions-regex-in-javascript-
9c58feb27eb4

 https://www.tutorialspoint.com/javascript/javascript_regexp_object.htm

 https://www.w3schools.com/jsref/jsref_obj_regexp.asp

 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions

37

