
5/13/2020

1

JavaScript & Document Object
Model (DOM)

The contents and slides of this topic are used with
permission from:
• Jennifer Robbins, Learning Web Design, O'Reilly, 5th edition, May 2018, ISBN 978-1-491-96020-2.

• Paul S. Wang, Dynamic Web programming and HTML5, Routledge, 1 edition, 2012, ISBN 1439871825.

 What JavaScript is

 Variables and arrays

 if/else statements and loops

 Native and custom functions

 Browser objects

 Event handlers

JavaScript

1

2

5/13/2020

2

What Is JavaScript?

 JavaScript is a client-side scripting language—it is processed on the
user’s machine (not the server).

 It is reliant on the browser’s capabilities (it may even be unavailable
entirely).

 It is a dynamic programming language—it does not need to be
compiled into an executable program. The browser reads it just as we
do.

 It is loosely typed—you don’t need to define variable types as you do
for other programming languages.

JavaScript Tasks

 JavaScript adds a behavioral layer (interactivity) to a web
page. Some examples include:

 Checking form submissions and provide feedback messages
and UI changes

 Injecting content into current documents on the fly

 Showing and hiding content based on a user clicking a link or
heading

 Completing a term in a search box

 Testing for browser features and capabilities

 Much more!

3

4

5/13/2020

3

Adding Scripts to a Page

 Embedded script
Include the script in an HTML document with the script
element:

 <script>
 … JavaScript code goes here
 </script>

 External script
Use the src attribute in the script element to point to
an external, standalone .js file:

 <script src="my_script.js"></script>

Script Placement

 In the head of the document

 For when you want the script to
do something before the body
completely loads (ex:
Modernizr):

 <!DOCTYPE html>
 <html lang="en">
 <head>
 <meta charset="utf-8">
 <script

src="script.js"></script>
 </head>
 ...

 Just before the </body> tag

 Preferred when the browser
needs to parse the document
and its DOM structure before
running the script:

 ...
 <body>
 <!--contents of page-->
 <script

src="script.js"></script>
 </body>
 </html>

The script element can go anywhere in the document, but the
most common places are as follows:

5

6

5/13/2020

4

JavaScript Syntax Basics

 JavaScript is case-sensitive.

 Whitespace is ignored (unless it is enclosed in quotes in a text string).

 A script is made up of a series of statements, commands that tell the
browser what to do.

 Single-line comments in JavaScript appear after two // characters:

 // This is a single-line comment

 Multiple-line comments go between /* and */ characters.

Building Blocks of Scripts

Variables

Comparison operators

 if/else statements

Loops

Functions

Scope

7

8

5/13/2020

5

Variables

 A variable is made up of a name and a value.

 You create a variable so that you can refer to the value by name
later in the script.

 The value can be a number, text string, element in the DOM, or
function, to name a few examples.

 Variables are defined using the var keyword:

 var foo = 5;

 The variable is named foo. The equals sign (=) indicates we are
assigning it the numeric value of 5.

Variables (cont’d)

 Rules for naming a variable:

 It must start with a letter or underscore.

 It may not contain character spaces. Use underscores or CamelCase instead.

 It may not contain special characters (! . , / \ + * =).

 It should describe the information it contains.

9

10

5/13/2020

6

Value Data Types

 Values assigned to variables fall under a few data types:

 Undefined
The variable is declared by giving it a name, but no value:

 var foo;

 alert(foo); // Will open a dialog containing "undefined"

 null
Assigns the variable no inherent value:

 var foo = null;

 alert(foo); // Will open a dialog containing "null"

 Numbers
When you assign a number (e.g., 5), JavaScript treats it as a number
(you don’t need to tell it it's a number):

 var foo = 5;

 alert(foo + foo); // This will alert "10"

Value Data Types (cont’d)

 Strings
If the value is wrapped in single or double quotes, it is treated as a string
of text:

 var foo = "five";

 alert(foo); // Will alert "five"

 alert(foo + foo); // Will alert "fivefive"

 Booleans
Assigns a true or false value, used for scripting logic:

 var foo = true; // The variable "foo" is now true

 Arrays
A group of multiple values (called members) assigned to a single variable.
Values in arrays are indexed (assigned a number starting with 0). You can
refer to array values by their index numbers:

 var foo = [5, "five", "5"];

 alert(foo[0]); // Alerts "5"
 alert(foo[1]); // Alerts "five"
 alert(foo[2]); // Also alerts "5"

11

12

5/13/2020

7

Comparison Operators

 Comparison operators are special characters in JavaScript syntax
that evaluate and compare values:

 == Is equal to

 != Is not equal to

 === Is identical to (equal to and of the
same data type)

 !== Is not identical to

 > Is greater than

 >= Is greater than or equal to

 < Is less than

 <= Is less than or equal to

Comparison Operators (cont’d)

 Example
When we compare two values, JavaScript evaluates the
statement and gives back a Boolean (true/false) value:

 alert(5 == 5); // This will alert "true"

 alert(5 != 6); // This will alert "true"

 alert(5 < 1); // This will alert "false"

 NOTE: Equal to (==) is not the same as identical to (===).
Identical values must share a data type:

 alert("5" == 5); // This will alert "true". They're both
"5".

 alert("5" === 5); // This will alert "false". They're both
"5", but they're not the same data type.

 alert("5" !== 5); // This will alert "true", since they're
not the same data type.

13

14

5/13/2020

8

Mathematical Operators

 Mathematical operators perform mathematical functions on numeric values:

 + Add

 - Subtract

 * Multiply

 / Divide

 += Adds the value to itself

 ++ Increases the value of a number (or number in a variable) by 1

 -- Decreases the value of a number (or number in a variable) by 1

if/else Statements

 An if/else statement tests for conditions by asking a true/false
question.

 If the condition in parentheses is met, then execute the commands
between the curly brackets ({}):

if(true) {
// Do something.

}

 Example:
 if(1 != 2) {
 alert("These values are not equal.");
 // It is true that 1 is never equal to 2, so we should

see this alert.
 }

15

16

5/13/2020

9

if/else Statements (cont’d)

 If you want to do one thing if the test is true and something else if it is
false, include an else statement after the if statement:

 var test = "testing";
 if(test == "testing") {
 alert("You haven't changed anything.");
 } else {
 alert("You've changed something!");
 }

 Changing the value of the test variable to anything but
the word “testing” will trigger the alert “You've
changed something!”

Loops

 Loops allow you to do something to every variable in an
array without writing a statement for every one.

 One way to write a loop is with a for statement:

 for(initialize variable; test condition; alter
the value;) {

 // do something
 }

17

18

5/13/2020

10

Loops (cont’d)

 Example: This loop triggers 3 alerts, reading "0", "1", and “2":

for(var i = 0, i <= 2, i++) {
alert(i);

}

 for(): Says, "for every time this is true, do this.”

 var i = 0: Creates a new variable i with its value set to 0. "i"
(short for “index”) is a common variable name.

 i <= 2: Says, “as long as i is less than or equal to 2, keep looping.”

 i++: Shorthand for “every time this loop runs, add 1 to the value of
i.”

 {alert(i);}: This loop will run three times (once each for 0, 1,
and 2 values) and alert the i value.

Functions

 A function is a bit of code for performing a task that
doesn’t run until it is referenced or called.

 Parentheses sometimes contain arguments (additional
information used by the function):

19

20

5/13/2020

11

Functions (cont’d)

 Some functions are built into JavaScript. Here are examples of
native functions:

 alert(), confirm(), and prompt()
Functions that trigger browser-level dialog boxes

 Date()
Returns the current date and time

 You can also create your own custom functions by typing
function followed by a name for the function and the task it
performs:

 function name() {
 // Code for the new function goes
here.
 }

Variable Scope

 A variable that can only be used within one function is locally
scoped. When you define a variable inside a function, include
the var keyword to keep it locally scoped (recommended):

 var foo = "value";

 A variable that can be used by any script on your page is said to
be globally scoped.

 Any variable created outside of a function is automatically
globally scoped:

 var foo = "value";

 To make a variable created inside a function globally scoped,
omit the var keyword:

 foo = "value";

21

22

5/13/2020

12

The Browser Object
 JavaScript lets you manipulate parts of the browser window itself (the

window object).

 Examples of window properties and methods:

Property/Method Description
event Represents the state of an event

history Contains the URLs the user has visited within a browser
window

location Gives read/write access to the URI in the address bar

status Sets or returns the text in the status bar of the window

alert() Displays an alert box with a specified message and an
OK button

close() Closes the current window

confirm() Displays a dialog box with a specified message and an
OK and a Cancel button

focus() Sets focus on the current window

Event Handlers

 An event is an action that can be detected with JavaScript and
used to trigger scripts.

 Events are identified by event handlers. Examples:

 onload When the page loads

 onclick When the mouse clicks an object

 onmouseover When the pointer is moved over an element

 onerror When an error occurs when the document or a
resource loads

23

24

5/13/2020

13

Event Handlers (cont’d)

 Event handlers can be applied to items in pages in three ways:

 As an HTML attribute:

<body onclick="myFunction();">
/* myFunction runs when the user clicks anything
within 'body' */

 As a method attached to the element:

 window.onclick = myFunction;
 /* myFunction will run when the user
clicks anything within the browser window */

 Using addEventListener():

 window.addEventListener("click", myFunction);

 Notice that we omit the preceding “on” from the event

handler with this syntax.

Exercise

25

26

5/13/2020

14

 What the DOM is

 Accessing and changing elements, attributes, and contents

 Polyfills

 JavaScript libraries

Document Object Model (DOM)

Intro to the DOM

 The Document Object Model (DOM) is a programming interface that
provides a way to access and manipulate the contents of a document.

 It provides a structured map of the document and a set of methods for
interacting with them.

 It can be used with other XML languages and it can be accessed by
other programming languages (like PHP, Ruby, etc.).

27

28

5/13/2020

15

Node Tree

 The DOM treats the structure of a document like a tree with branches:

Node Tree (cont’d)

 Every element, attribute, and piece of content is a node on the tree
and can be accessed for scripting:

The nodes within
a p element

29

30

5/13/2020

16

Accessing Nodes

 To point to nodes, list them separated by periods (.).

 In this example, the variable foo is set to the HTML content of an
element with id="beginner":

 var foo = document.getElementById("beginner").innerHTML;

 The document object points to the page itself.

 getElementById specifies an element with the id “beginner”.

 innerHTML stands for the HTML content within that element.

Accessing Nodes (cont’d)

 Methods for accessing nodes in the document:

 getElementsByTagName()

 Accesses all elements with the given tag name
 Example: document.getElementsByTagName("p");

 getElementById()

 Accesses a single element by the value of its id attribute
 Example: document.getElementById("special");

 getElementsByClassName()

 Access elements by the value of a class attribute
 Example: document.getElementsByClassName("product");

31

32

5/13/2020

17

Accessing Nodes (cont’d.)

 querySelectorAll()

 Accesses nodes based on a CSS selector
 Example: document.querySelectorAll(".sidebar p");

 getAttribute()

 Accesses the value of a given attribute
 Example: getAttribute("src")

Manipulating Nodes

 There are several built-in methods for manipulating nodes:

 setAttribute()
 Sets the value of a given attribute:
 bigImage.setAttribute("src", "newimage.jpg");

 innerHTML
 Specifies the content inside an element (including markup if needed):
 introDiv.innerHTML = "<p>This is the intro text.</p>"

 style
 Applies a style using CSS properties:
 document.getElementById("intro").style.backgroundColor =

"#000;"

33

34

5/13/2020

18

Adding and Removing
Elements

 The DOM allows developers to change the document structure by
adding and removing nodes:

 createElement()

 createTextNode()

 appendChild()

 insertBefore()

 replaceChild()

 removeChild()

JavaScript Libraries

 A JavaScript library is a collection of prewritten functions and
methods that you can use in your scripts to accomplish common tasks
or simplify complex ones.

 Some are large frameworks for building complex applications.

 Some are targeted to specific tasks, such as forms or math.

 The most popular library is jQuery.

 Try searching “JavaScript library for __________” to see if there are
pre-made scripts you can use or adapt to your needs.

35

36

5/13/2020

19

Some resources
 Javascript tutorials:

 Tutorialspoint JavaScript tutorial: https://www.tutorialspoint.com/javascript/index.htm

 JavaScript form validation:

 https://www.w3resource.com/javascript/form/javascript-sample-registration-form-
validation.php

 https://www.geeksforgeeks.org/form-validation-using-html-javascript/

 http://javascript-coder.com/html-form/javascript-form-validation.phtml

 https://www.tutorialrepublic.com/javascript-tutorial/javascript-form-validation.php

 https://o7planning.org/en/12273/javascript-form-validation-tutorial

 JavaScript regular expressions:

 https://eloquentjavascript.net/09_regexp.html

 https://blog.bitsrc.io/a-beginners-guide-to-regular-expressions-regex-in-javascript-
9c58feb27eb4

 https://www.tutorialspoint.com/javascript/javascript_regexp_object.htm

 https://www.w3schools.com/jsref/jsref_obj_regexp.asp

 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions

37

